
 

JAVA FULL STACK 

Basic Java Full Stack Interview Questions (1-25) 

1. What is Java? 
 

○ Java is a high-level, object-oriented programming language 
developed by Sun Microsystems. It is used for developing 
applications that can run on any device or operating system. 
 

2. What is the difference between JDK, JRE, and JVM? 
 

○ JDK (Java Development Kit) is a full-featured SDK for Java 
development. JRE (Java Runtime Environment) provides libraries 
and JVM (Java Virtual Machine) for running Java applications. 
JVM is responsible for converting bytecode into machine code. 
 

3. What is the role of a Full Stack Developer? 
 

○ A Full Stack Developer is proficient in both front-end and 
back-end development. They work on everything from the user 
interface to the database and server-side logic. 
 

4. What is the difference between a GET and POST request in HTTP? 
 

○ A GET request retrieves data from the server, while a POST 
request submits data to the server. 
 

5. What is the use of Spring Framework? 
 

○ The Spring Framework is a comprehensive programming and 
configuration model for Java applications, providing support for 
dependency injection, aspect-oriented programming, and more. 
 

6. What is the difference between abstract classes and interfaces in 
Java? 
 

○ Abstract classes can have both abstract and concrete methods, 
while interfaces can only have abstract methods (though Java 8 
allows default methods). 
 



 

7. What is the difference between ArrayList and LinkedList? 
 

○ ArrayList is backed by a dynamic array and provides fast access 
to elements, whereas LinkedList is backed by a doubly linked list, 
offering faster insertion and deletion. 
 

8. What is the difference between HashMap and TreeMap? 
 

○ HashMap is an unordered collection that does not maintain any 
order, while TreeMap is a sorted map based on the natural 
ordering of keys or a custom comparator. 
 

9. What is the use of the 'final' keyword in Java? 
 

○ The 'final' keyword is used to define constants, prevent method 
overriding, and prevent inheritance of a class. 
 

10. What is a constructor in Java? 
 

○ A constructor is a special method used to initialize objects. It is 
called when an object of a class is created. 
 

11. What is the difference between '==' and 'equals()' in Java? 
 

○ '==' compares references (memory addresses), while 'equals()' 
compares the actual content of two objects. 
 

12. What is polymorphism in Java? 
 

○ Polymorphism allows objects of different classes to be treated as 
objects of a common superclass. It enables one interface to be 
used for a general class of actions. 
 

13. What is the purpose of the 'static' keyword in Java? 
 

○ The 'static' keyword allows a method or variable to be associated 
with the class rather than with instances of the class. 
 

14. What is the Java Collections Framework? 
 



 

○ The Java Collections Framework provides a set of interfaces and 
classes that implement commonly used data structures, such as 
lists, sets, and maps. 
 

15. What is the difference between 'String' and 'StringBuilder' in 
Java? 
 

○ String is immutable, meaning its value cannot be changed after 
initialization, while StringBuilder is mutable, allowing for 
modification of its value. 
 

16. What is multithreading in Java? 
 

○ Multithreading in Java allows concurrent execution of two or more 
parts of a program for maximum CPU utilization. 
 

17. What is the use of the 'super' keyword in Java? 
 

○ The 'super' keyword is used to refer to the superclass of the 
current object, typically to access superclass methods or 
constructors. 
 

18. What is exception handling in Java? 
 

○ Exception handling in Java is the mechanism to handle runtime 
errors using try, catch, and finally blocks. 
 

19. What is a Java package? 
 

○ A package in Java is a namespace that organizes classes and 
interfaces, making code modular and easy to manage. 
 

20. What is a session in web applications? 
 

○ A session is a mechanism that allows the server to maintain state 
across multiple HTTP requests from the same user. 
 

21. What is the use of 'synchronized' keyword in Java? 
 



 

○ The 'synchronized' keyword is used to ensure that a method or 
block of code is accessed by only one thread at a time, ensuring 
thread safety. 
 

22. What is RESTful API? 
 

○ A RESTful API is an architectural style for designing networked 
applications, using HTTP methods (GET, POST, PUT, DELETE) 
for communication. 
 

23. What is the use of the 'this' keyword in Java? 
 

○ The 'this' keyword refers to the current instance of a class and is 
used to access instance variables and methods. 
 

24. What is the difference between a Stack and a Queue? 
 

○ A Stack is a last-in, first-out (LIFO) data structure, while a Queue 
is a first-in, first-out (FIFO) data structure. 
 

25. What are annotations in Java? 
 

○ Annotations are metadata added to Java code, which can be 
used by compilers or runtime environments to perform actions. 
 

 

Intermediate Java Full Stack Interview Questions (26-50) 

26. What is Spring Boot? 
 

○ Spring Boot is a framework for building production-grade, 
stand-alone Spring applications with minimal configuration. 
 

27. What is the difference between Spring and Spring Boot? 
 

○ Spring provides a comprehensive set of features for 
enterprise-level applications, while Spring Boot simplifies the 
setup process with conventions over configuration. 
 



 

28. What is the Spring MVC architecture? 
 

○ Spring MVC is a request-response model consisting of the Model, 
View, and Controller components. It separates concerns and 
allows for cleaner application design. 
 

29. What are microservices in Java? 
 

○ Microservices are an architectural style where an application is 
divided into small, loosely coupled, independently deployable 
services. 
 

30. What is Hibernate in Java? 
 

○ Hibernate is an ORM (Object Relational Mapping) framework that 
simplifies database interactions by mapping Java objects to 
database tables. 
 

31. What is the difference between @RequestMapping and 
@GetMapping in Spring? 
 

○ @RequestMapping is used to map HTTP requests to handler 
methods of MVC controllers, while @GetMapping is a shortcut for 
@RequestMapping with the GET method. 
 

32. What are the different types of HTTP methods? 
 

○ The different HTTP methods are GET (retrieve), POST (create), 
PUT (update), DELETE (remove), PATCH (partial update), and 
OPTIONS (request options). 
 

33. What is the use of the @Autowired annotation in Spring? 
 

○ @Autowired is used to inject dependencies into Spring beans 
automatically, eliminating the need for explicit bean definitions. 
 

34. What is the purpose of the 'bean' in Spring? 
 

○ A bean in Spring is an object managed by the Spring IoC 
container, and it can be injected into other objects to enable loose 



 

coupling. 
 

35. What is Dependency Injection in Spring? 
 

○ Dependency Injection (DI) is a design pattern where an object's 
dependencies are provided by an external source rather than the 
object itself. 
 

36. What is the difference between @Component, @Service, and 
@Repository in Spring? 
 

○ All three annotations are used to mark beans, but @Component 
is generic, @Service is for service-layer beans, and @Repository 
is for DAO-layer beans. 
 

37. What is the role of the controller in the Spring MVC framework? 
 

○ The controller handles user input, calls service methods, and 
returns a model and view for rendering a response. 
 

38. What is a REST controller in Spring? 
 

○ A REST controller is a type of controller in Spring MVC that 
handles HTTP requests and responses with RESTful services, 
typically returning JSON or XML. 
 

39. What is the difference between a List and a Set in Java? 
 

○ A List is an ordered collection that allows duplicates, while a Set 
is an unordered collection that does not allow duplicates. 
 

40. What is the role of the @Entity annotation in Hibernate? 
 

○ @Entity marks a Java class as a persistent entity to be mapped 
to a table in the database. 
 

41. What is the use of @Transactional annotation in Spring? 
 

○ @Transactional is used to ensure that a method or class is 
executed within a transactional context, providing ACID properties 



 

for database operations. 
 

42. What is JWT (JSON Web Token)? 
 

○ JWT is an open standard used to securely transmit information 
between parties as a JSON object, typically used for 
authentication. 
 

43. What is the purpose of a sessionFactory in Hibernate? 
 

○ A sessionFactory is used to create and manage Hibernate 
sessions, which are responsible for interacting with the database. 
 

44. What is the difference between @PathVariable and 
@RequestParam in Spring? 
 

○ @PathVariable is used to extract values from URI templates, 
while @RequestParam is used to extract query parameters from 
the request URL. 
 

45. What is a join in SQL and how is it used in Hibernate? 
 

○ A join in SQL combines rows from two or more tables based on 
related columns. Hibernate supports join operations using HQL 
(Hibernate Query Language) or Criteria API. 
 

46. What is the significance of @EnableAutoConfiguration in 
Spring Boot? 
 

○ @EnableAutoConfiguration is used to automatically configure 
Spring application context based on the project dependencies. 
 

47. What is Spring Security? 
 

○ Spring Security is a framework for securing Java applications, 
providing authentication and authorization capabilities. 
 

48. What is the difference between @PreAuthorize and @Secured 
annotations? 
 



 

○ @PreAuthorize allows for method-level security with expressions, 
while @Secured is a simpler way to specify roles that can access 
the method. 
 

49. What is a Spring Boot Actuator? 
 

○ Spring Boot Actuator provides production-ready features such as 
monitoring, health checks, and metrics for Spring Boot 
applications. 
 

50. How does Java handle memory management? 
 

○ Java handles memory management through automatic garbage 
collection, which reclaims unused memory. 
 

 

Advanced Java Full Stack Interview Questions (51-75) 

51. What is the role of a Full Stack Developer in a microservices 
architecture? 
 

○ Full Stack Developers design, develop, and integrate both 
frontend and backend components of microservices-based 
applications. 
 

52. How do you manage state in a Spring Boot microservices 
application? 
 

○ State management can be done using session management, 
JWT tokens, or external distributed caches like Redis. 
 

53. What is the role of an API Gateway in a microservices 
architecture? 
 

○ An API Gateway handles request routing, load balancing, 
security, and rate limiting for microservices. 
 

54. How do you ensure data consistency in distributed systems? 
 



 

○ Data consistency in distributed systems can be achieved using 
eventual consistency, CAP theorem, and distributed transactions. 
 

55. What is the use of Spring Cloud in microservices? 
 

○ Spring Cloud provides tools for building and deploying 
microservices-based applications, including service discovery, 
configuration management, and circuit breakers. 
 

56. What is the difference between synchronous and asynchronous 
communication in microservices? 
 

○ Synchronous communication involves direct calls between 
services, while asynchronous communication uses message 
queues for decoupled interaction. 
 

57. What is Hystrix in microservices architecture? 
 

○ Hystrix is a library used for fault tolerance and latency 
management in microservices, allowing for fallback mechanisms 
and circuit breakers. 
 

58. How do you implement versioning in RESTful APIs? 
 

○ Versioning in RESTful APIs can be done using URI paths, request 
parameters, or headers. 
 

59. What is the difference between monolithic and microservices 
architecture? 
 

○ In monolithic architecture, the entire application is a single unit, 
while microservices architecture breaks the application into 
smaller, loosely coupled services. 
 

60. What is the role of a Service Registry in a microservices 
architecture? 
 

○ A Service Registry keeps track of available services and their 
instances, enabling service discovery for dynamic communication 



 

between microservices. 
 

61. What are the advantages of using Spring Boot over traditional 
Spring? 
 

○ Spring Boot simplifies the development process by providing 
automatic configuration, embedded servers, and convention over 
configuration. 
 

62. What is API Gateway in Spring Cloud? 
 

○ The API Gateway in Spring Cloud provides a unified entry point to 
microservices, handling routing, security, load balancing, and 
monitoring. 
 

63. What are the different types of joins in SQL? 
 

○ The different types of joins are INNER JOIN, LEFT JOIN, RIGHT 
JOIN, and FULL JOIN, each serving different purposes in 
combining data from multiple tables. 
 

64. What is database normalization? 
 

○ Database normalization is the process of organizing a database 
to reduce redundancy and improve data integrity. 
 

65. What is the purpose of a load balancer in microservices? 
 

○ A load balancer distributes incoming traffic across multiple 
instances of a service to ensure high availability and scalability. 
 

66. What is the role of Eureka in Spring Cloud? 
 

○ Eureka is a service discovery tool that helps microservices 
register themselves and discover other services. 
 

67. What is the difference between a REST API and a SOAP API? 
 

○ REST is lightweight, uses HTTP methods, and is stateless, while 
SOAP is a protocol that is more complex and typically uses XML 



 

for message exchange. 
 

68. What is the role of a circuit breaker in microservices? 
 

○ A circuit breaker prevents service failures from cascading through 
the system, allowing for fallback mechanisms and reducing the 
impact of failures. 
 

69. What is the difference between a monolithic and modular Java 
application? 
 

○ A monolithic application is a single, tightly-coupled unit, while a 
modular application is broken into smaller, independent modules 
for easier maintainability. 
 

70. What is Cloud Foundry and how does it relate to Java? 
 

○ Cloud Foundry is an open-source platform-as-a-service (PaaS) 
for deploying and managing applications, including Java-based 
ones. 
 

71. What is Docker and how does it benefit Java development? 
 

○ Docker is a platform for developing, shipping, and running 
applications in containers. It helps in packaging Java applications 
and their dependencies for consistent environments. 
 

72. What is Kubernetes and how does it help in deploying Java 
applications? 
 

○ Kubernetes is an open-source system for automating 
containerized application deployment, scaling, and management. 
 

73. What is the difference between a primary key and a foreign key? 
 

○ A primary key uniquely identifies records in a table, while a 
foreign key establishes a relationship between two tables. 
 



 

74. What are the advantages of using NoSQL databases like 
MongoDB over relational databases? 
 

○ NoSQL databases are more flexible in schema design, handle 
unstructured data, and offer better scalability for large datasets. 
 

75. What is the role of a message broker in microservices? 
 

○ A message broker facilitates asynchronous communication 
between services by routing messages through queues and 
topics. 
 

 

Technical Java Full Stack Interview Questions (76-100) 

76. What is the difference between a thread and a process in Java? 
 

○ A process is a self-contained execution environment, while a 
thread is a smaller unit of a process that shares the same 
resources. 
 

77. How do you implement pagination in a Spring Boot application? 
 

○ Pagination can be implemented using Spring Data JPA’s 
Pageable interface to retrieve a subset of records from the 
database. 
 

78. What are Java's access modifiers and how do they work? 
 

○ Java provides four access modifiers: public, protected, private, 
and default (no modifier), which control the visibility of classes 
and members. 
 

79. How do you implement an authentication system in a Spring 
Boot application? 
 

○ Authentication in Spring Boot can be implemented using Spring 
Security, with support for OAuth2, JWT, or basic authentication. 
 



 

80. What are some common performance optimizations you can 
make in Java? 
 

○ Performance can be improved by using efficient data structures, 
avoiding unnecessary object creation, leveraging multi-threading, 
and using JVM tuning. 
 

81. What is Spring Boot DevTools? 
 

○ Spring Boot DevTools provides development-time features like 
hot swapping, automatic restarts, and live reload for a better 
development experience. 
 

82. What is the purpose of the @Configuration annotation in 
Spring? 
 

○ @Configuration is used to indicate that a class contains Spring 
bean definitions, typically used for defining application 
configuration. 
 

83. What is the difference between the Spring Bean lifecycle and 
the Java Bean lifecycle? 
 

○ The Java Bean lifecycle is simpler, based on getter/setter 
methods. In Spring, the Bean lifecycle is managed by the Spring 
container with additional hooks like initialization and destruction 
methods. 
 

84. How do you handle database migrations in Spring Boot? 
 

○ Database migrations can be handled using tools like Liquibase or 
Flyway, which provide version-controlled SQL scripts to manage 
database changes. 
 

85. What is the purpose of the Spring Batch framework? 
 

○ Spring Batch is used for batch processing jobs, such as reading, 
processing, and writing large volumes of data in a transactional 
manner. 
 



 

86. What is the significance of the 'volatile' keyword in Java? 
 

○ The 'volatile' keyword ensures visibility of changes to a variable 
across threads, preventing optimization by the JVM. 
 

87. How do you handle cross-origin resource sharing (CORS) in 
Spring Boot? 
 

○ CORS can be configured in Spring Boot using @CrossOrigin 
annotations or global configuration with WebMvcConfigurer. 
 

88. How do you implement logging in a Spring Boot application? 
 

○ Logging can be implemented using libraries like Logback or 
SLF4J, and configuration can be done in 
application.properties or application.yml. 
 

89. What is the use of Spring Cloud Config? 
 

○ Spring Cloud Config provides a centralized configuration 
management solution for distributed applications, allowing for 
dynamic configuration changes. 
 

90. What is the role of Redis in Java-based applications? 
 

○ Redis is an in-memory data store that can be used for caching, 
session management, and message brokering in Java 
applications. 
 

91. What are the main differences between SQL and NoSQL 
databases? 
 

○ SQL databases are relational, use structured data, and support 
ACID transactions, while NoSQL databases are non-relational, 
handle unstructured data, and offer scalability. 
 

92. What is an SQL injection, and how do you prevent it in a Java 
application? 
 



 

○ SQL injection is a security vulnerability where malicious SQL 
statements are executed in a database query. It can be prevented 
by using parameterized queries and ORM frameworks like 
Hibernate. 
 

93. What is the use of OAuth2 in a Java application? 
 

○ OAuth2 is an authorization framework that allows third-party 
services to access user resources without exposing user 
credentials. 
 

94. What is the role of Docker in Java Full Stack development? 
 

○ Docker allows developers to containerize Java applications, 
ensuring consistency across different environments and 
simplifying deployment. 
 

95. How do you handle asynchronous processing in Spring Boot? 
 

○ Asynchronous processing can be implemented in Spring Boot 
using @Async annotation or by leveraging message queues like 
RabbitMQ. 
 

96. What is the purpose of Spring Boot’s embedded Tomcat server? 
 

○ Spring Boot’s embedded Tomcat server allows applications to run 
as stand-alone applications without needing a separate servlet 
container. 
 

97. How do you optimize database queries in a Java Full Stack 
application? 
 

○ Database queries can be optimized by indexing, using query 
caching, and avoiding N+1 select problems. 
 

98. What is the difference between eager and lazy loading in 
Hibernate? 
 

○ Eager loading fetches related entities immediately, while lazy 
loading fetches them only when needed, reducing initial loading 



 

time. 
 

99. How do you ensure security in a Java Full Stack application? 
 

○ Security can be ensured using encryption, input validation, secure 
authentication, authorization, and protection against common 
threats like XSS and CSRF. 
 

100. What is a WebSocket and how is it used in Full Stack 
applications? - A WebSocket is a protocol for full-duplex 
communication between client and server, used in real-time applications 
like chat apps or live updates. 

 


	Basic Java Full Stack Interview Questions (1-25) 
	Intermediate Java Full Stack Interview Questions (26-50) 
	Advanced Java Full Stack Interview Questions (51-75) 
	Technical Java Full Stack Interview Questions (76-100) 

