
 

JAVA FULL STACK 

Basic Java Full Stack Interview Questions (1-25) 

1.​ What is Java?​
 

○​ Java is a high-level, object-oriented programming language 
developed by Sun Microsystems. It is used for developing 
applications that can run on any device or operating system.​
 

2.​ What is the difference between JDK, JRE, and JVM?​
 

○​ JDK (Java Development Kit) is a full-featured SDK for Java 
development. JRE (Java Runtime Environment) provides libraries 
and JVM (Java Virtual Machine) for running Java applications. 
JVM is responsible for converting bytecode into machine code.​
 

3.​ What is the role of a Full Stack Developer?​
 

○​ A Full Stack Developer is proficient in both front-end and 
back-end development. They work on everything from the user 
interface to the database and server-side logic.​
 

4.​ What is the difference between a GET and POST request in HTTP?​
 

○​ A GET request retrieves data from the server, while a POST 
request submits data to the server.​
 

5.​ What is the use of Spring Framework?​
 

○​ The Spring Framework is a comprehensive programming and 
configuration model for Java applications, providing support for 
dependency injection, aspect-oriented programming, and more.​
 

6.​ What is the difference between abstract classes and interfaces in 
Java?​
 

○​ Abstract classes can have both abstract and concrete methods, 
while interfaces can only have abstract methods (though Java 8 
allows default methods).​
 



 

7.​ What is the difference between ArrayList and LinkedList?​
 

○​ ArrayList is backed by a dynamic array and provides fast access 
to elements, whereas LinkedList is backed by a doubly linked list, 
offering faster insertion and deletion.​
 

8.​ What is the difference between HashMap and TreeMap?​
 

○​ HashMap is an unordered collection that does not maintain any 
order, while TreeMap is a sorted map based on the natural 
ordering of keys or a custom comparator.​
 

9.​ What is the use of the 'final' keyword in Java?​
 

○​ The 'final' keyword is used to define constants, prevent method 
overriding, and prevent inheritance of a class.​
 

10.​ What is a constructor in Java?​
 

○​ A constructor is a special method used to initialize objects. It is 
called when an object of a class is created.​
 

11.​What is the difference between '==' and 'equals()' in Java?​
 

○​ '==' compares references (memory addresses), while 'equals()' 
compares the actual content of two objects.​
 

12.​ What is polymorphism in Java?​
 

○​ Polymorphism allows objects of different classes to be treated as 
objects of a common superclass. It enables one interface to be 
used for a general class of actions.​
 

13.​ What is the purpose of the 'static' keyword in Java?​
 

○​ The 'static' keyword allows a method or variable to be associated 
with the class rather than with instances of the class.​
 

14.​ What is the Java Collections Framework?​
 



 

○​ The Java Collections Framework provides a set of interfaces and 
classes that implement commonly used data structures, such as 
lists, sets, and maps.​
 

15.​ What is the difference between 'String' and 'StringBuilder' in 
Java?​
 

○​ String is immutable, meaning its value cannot be changed after 
initialization, while StringBuilder is mutable, allowing for 
modification of its value.​
 

16.​ What is multithreading in Java?​
 

○​ Multithreading in Java allows concurrent execution of two or more 
parts of a program for maximum CPU utilization.​
 

17.​ What is the use of the 'super' keyword in Java?​
 

○​ The 'super' keyword is used to refer to the superclass of the 
current object, typically to access superclass methods or 
constructors.​
 

18.​ What is exception handling in Java?​
 

○​ Exception handling in Java is the mechanism to handle runtime 
errors using try, catch, and finally blocks.​
 

19.​ What is a Java package?​
 

○​ A package in Java is a namespace that organizes classes and 
interfaces, making code modular and easy to manage.​
 

20.​ What is a session in web applications?​
 

○​ A session is a mechanism that allows the server to maintain state 
across multiple HTTP requests from the same user.​
 

21.​ What is the use of 'synchronized' keyword in Java?​
 



 

○​ The 'synchronized' keyword is used to ensure that a method or 
block of code is accessed by only one thread at a time, ensuring 
thread safety.​
 

22.​ What is RESTful API?​
 

○​ A RESTful API is an architectural style for designing networked 
applications, using HTTP methods (GET, POST, PUT, DELETE) 
for communication.​
 

23.​ What is the use of the 'this' keyword in Java?​
 

○​ The 'this' keyword refers to the current instance of a class and is 
used to access instance variables and methods.​
 

24.​ What is the difference between a Stack and a Queue?​
 

○​ A Stack is a last-in, first-out (LIFO) data structure, while a Queue 
is a first-in, first-out (FIFO) data structure.​
 

25.​ What are annotations in Java?​
 

○​ Annotations are metadata added to Java code, which can be 
used by compilers or runtime environments to perform actions.​
 

 

Intermediate Java Full Stack Interview Questions (26-50) 

26.​ What is Spring Boot?​
 

○​ Spring Boot is a framework for building production-grade, 
stand-alone Spring applications with minimal configuration.​
 

27.​ What is the difference between Spring and Spring Boot?​
 

○​ Spring provides a comprehensive set of features for 
enterprise-level applications, while Spring Boot simplifies the 
setup process with conventions over configuration.​
 



 

28.​ What is the Spring MVC architecture?​
 

○​ Spring MVC is a request-response model consisting of the Model, 
View, and Controller components. It separates concerns and 
allows for cleaner application design.​
 

29.​ What are microservices in Java?​
 

○​ Microservices are an architectural style where an application is 
divided into small, loosely coupled, independently deployable 
services.​
 

30.​ What is Hibernate in Java?​
 

○​ Hibernate is an ORM (Object Relational Mapping) framework that 
simplifies database interactions by mapping Java objects to 
database tables.​
 

31.​ What is the difference between @RequestMapping and 
@GetMapping in Spring?​
 

○​ @RequestMapping is used to map HTTP requests to handler 
methods of MVC controllers, while @GetMapping is a shortcut for 
@RequestMapping with the GET method.​
 

32.​ What are the different types of HTTP methods?​
 

○​ The different HTTP methods are GET (retrieve), POST (create), 
PUT (update), DELETE (remove), PATCH (partial update), and 
OPTIONS (request options).​
 

33.​ What is the use of the @Autowired annotation in Spring?​
 

○​ @Autowired is used to inject dependencies into Spring beans 
automatically, eliminating the need for explicit bean definitions.​
 

34.​ What is the purpose of the 'bean' in Spring?​
 

○​ A bean in Spring is an object managed by the Spring IoC 
container, and it can be injected into other objects to enable loose 



 

coupling.​
 

35.​ What is Dependency Injection in Spring?​
 

○​ Dependency Injection (DI) is a design pattern where an object's 
dependencies are provided by an external source rather than the 
object itself.​
 

36.​ What is the difference between @Component, @Service, and 
@Repository in Spring?​
 

○​ All three annotations are used to mark beans, but @Component 
is generic, @Service is for service-layer beans, and @Repository 
is for DAO-layer beans.​
 

37.​ What is the role of the controller in the Spring MVC framework?​
 

○​ The controller handles user input, calls service methods, and 
returns a model and view for rendering a response.​
 

38.​ What is a REST controller in Spring?​
 

○​ A REST controller is a type of controller in Spring MVC that 
handles HTTP requests and responses with RESTful services, 
typically returning JSON or XML.​
 

39.​ What is the difference between a List and a Set in Java?​
 

○​ A List is an ordered collection that allows duplicates, while a Set 
is an unordered collection that does not allow duplicates.​
 

40.​ What is the role of the @Entity annotation in Hibernate?​
 

○​ @Entity marks a Java class as a persistent entity to be mapped 
to a table in the database.​
 

41.​ What is the use of @Transactional annotation in Spring?​
 

○​ @Transactional is used to ensure that a method or class is 
executed within a transactional context, providing ACID properties 



 

for database operations.​
 

42.​ What is JWT (JSON Web Token)?​
 

○​ JWT is an open standard used to securely transmit information 
between parties as a JSON object, typically used for 
authentication.​
 

43.​ What is the purpose of a sessionFactory in Hibernate?​
 

○​ A sessionFactory is used to create and manage Hibernate 
sessions, which are responsible for interacting with the database.​
 

44.​ What is the difference between @PathVariable and 
@RequestParam in Spring?​
 

○​ @PathVariable is used to extract values from URI templates, 
while @RequestParam is used to extract query parameters from 
the request URL.​
 

45.​ What is a join in SQL and how is it used in Hibernate?​
 

○​ A join in SQL combines rows from two or more tables based on 
related columns. Hibernate supports join operations using HQL 
(Hibernate Query Language) or Criteria API.​
 

46.​ What is the significance of @EnableAutoConfiguration in 
Spring Boot?​
 

○​ @EnableAutoConfiguration is used to automatically configure 
Spring application context based on the project dependencies.​
 

47.​ What is Spring Security?​
 

○​ Spring Security is a framework for securing Java applications, 
providing authentication and authorization capabilities.​
 

48.​ What is the difference between @PreAuthorize and @Secured 
annotations?​
 



 

○​ @PreAuthorize allows for method-level security with expressions, 
while @Secured is a simpler way to specify roles that can access 
the method.​
 

49.​ What is a Spring Boot Actuator?​
 

○​ Spring Boot Actuator provides production-ready features such as 
monitoring, health checks, and metrics for Spring Boot 
applications.​
 

50.​ How does Java handle memory management?​
 

○​ Java handles memory management through automatic garbage 
collection, which reclaims unused memory.​
 

 

Advanced Java Full Stack Interview Questions (51-75) 

51.​ What is the role of a Full Stack Developer in a microservices 
architecture?​
 

○​ Full Stack Developers design, develop, and integrate both 
frontend and backend components of microservices-based 
applications.​
 

52.​ How do you manage state in a Spring Boot microservices 
application?​
 

○​ State management can be done using session management, 
JWT tokens, or external distributed caches like Redis.​
 

53.​ What is the role of an API Gateway in a microservices 
architecture?​
 

○​ An API Gateway handles request routing, load balancing, 
security, and rate limiting for microservices.​
 

54.​ How do you ensure data consistency in distributed systems?​
 



 

○​ Data consistency in distributed systems can be achieved using 
eventual consistency, CAP theorem, and distributed transactions.​
 

55.​ What is the use of Spring Cloud in microservices?​
 

○​ Spring Cloud provides tools for building and deploying 
microservices-based applications, including service discovery, 
configuration management, and circuit breakers.​
 

56.​ What is the difference between synchronous and asynchronous 
communication in microservices?​
 

○​ Synchronous communication involves direct calls between 
services, while asynchronous communication uses message 
queues for decoupled interaction.​
 

57.​ What is Hystrix in microservices architecture?​
 

○​ Hystrix is a library used for fault tolerance and latency 
management in microservices, allowing for fallback mechanisms 
and circuit breakers.​
 

58.​ How do you implement versioning in RESTful APIs?​
 

○​ Versioning in RESTful APIs can be done using URI paths, request 
parameters, or headers.​
 

59.​ What is the difference between monolithic and microservices 
architecture?​
 

○​ In monolithic architecture, the entire application is a single unit, 
while microservices architecture breaks the application into 
smaller, loosely coupled services.​
 

60.​ What is the role of a Service Registry in a microservices 
architecture?​
 

○​ A Service Registry keeps track of available services and their 
instances, enabling service discovery for dynamic communication 



 

between microservices.​
 

61.​ What are the advantages of using Spring Boot over traditional 
Spring?​
 

○​ Spring Boot simplifies the development process by providing 
automatic configuration, embedded servers, and convention over 
configuration.​
 

62.​ What is API Gateway in Spring Cloud?​
 

○​ The API Gateway in Spring Cloud provides a unified entry point to 
microservices, handling routing, security, load balancing, and 
monitoring.​
 

63.​ What are the different types of joins in SQL?​
 

○​ The different types of joins are INNER JOIN, LEFT JOIN, RIGHT 
JOIN, and FULL JOIN, each serving different purposes in 
combining data from multiple tables.​
 

64.​ What is database normalization?​
 

○​ Database normalization is the process of organizing a database 
to reduce redundancy and improve data integrity.​
 

65.​ What is the purpose of a load balancer in microservices?​
 

○​ A load balancer distributes incoming traffic across multiple 
instances of a service to ensure high availability and scalability.​
 

66.​ What is the role of Eureka in Spring Cloud?​
 

○​ Eureka is a service discovery tool that helps microservices 
register themselves and discover other services.​
 

67.​ What is the difference between a REST API and a SOAP API?​
 

○​ REST is lightweight, uses HTTP methods, and is stateless, while 
SOAP is a protocol that is more complex and typically uses XML 



 

for message exchange.​
 

68.​ What is the role of a circuit breaker in microservices?​
 

○​ A circuit breaker prevents service failures from cascading through 
the system, allowing for fallback mechanisms and reducing the 
impact of failures.​
 

69.​ What is the difference between a monolithic and modular Java 
application?​
 

○​ A monolithic application is a single, tightly-coupled unit, while a 
modular application is broken into smaller, independent modules 
for easier maintainability.​
 

70.​ What is Cloud Foundry and how does it relate to Java?​
 

○​ Cloud Foundry is an open-source platform-as-a-service (PaaS) 
for deploying and managing applications, including Java-based 
ones.​
 

71.​ What is Docker and how does it benefit Java development?​
 

○​ Docker is a platform for developing, shipping, and running 
applications in containers. It helps in packaging Java applications 
and their dependencies for consistent environments.​
 

72.​ What is Kubernetes and how does it help in deploying Java 
applications?​
 

○​ Kubernetes is an open-source system for automating 
containerized application deployment, scaling, and management.​
 

73.​ What is the difference between a primary key and a foreign key?​
 

○​ A primary key uniquely identifies records in a table, while a 
foreign key establishes a relationship between two tables.​
 



 

74.​ What are the advantages of using NoSQL databases like 
MongoDB over relational databases?​
 

○​ NoSQL databases are more flexible in schema design, handle 
unstructured data, and offer better scalability for large datasets.​
 

75.​ What is the role of a message broker in microservices?​
 

○​ A message broker facilitates asynchronous communication 
between services by routing messages through queues and 
topics.​
 

 

Technical Java Full Stack Interview Questions (76-100) 

76.​ What is the difference between a thread and a process in Java?​
 

○​ A process is a self-contained execution environment, while a 
thread is a smaller unit of a process that shares the same 
resources.​
 

77.​ How do you implement pagination in a Spring Boot application?​
 

○​ Pagination can be implemented using Spring Data JPA’s 
Pageable interface to retrieve a subset of records from the 
database.​
 

78.​ What are Java's access modifiers and how do they work?​
 

○​ Java provides four access modifiers: public, protected, private, 
and default (no modifier), which control the visibility of classes 
and members.​
 

79.​ How do you implement an authentication system in a Spring 
Boot application?​
 

○​ Authentication in Spring Boot can be implemented using Spring 
Security, with support for OAuth2, JWT, or basic authentication.​
 



 

80.​ What are some common performance optimizations you can 
make in Java?​
 

○​ Performance can be improved by using efficient data structures, 
avoiding unnecessary object creation, leveraging multi-threading, 
and using JVM tuning.​
 

81.​ What is Spring Boot DevTools?​
 

○​ Spring Boot DevTools provides development-time features like 
hot swapping, automatic restarts, and live reload for a better 
development experience.​
 

82.​ What is the purpose of the @Configuration annotation in 
Spring?​
 

○​ @Configuration is used to indicate that a class contains Spring 
bean definitions, typically used for defining application 
configuration.​
 

83.​ What is the difference between the Spring Bean lifecycle and 
the Java Bean lifecycle?​
 

○​ The Java Bean lifecycle is simpler, based on getter/setter 
methods. In Spring, the Bean lifecycle is managed by the Spring 
container with additional hooks like initialization and destruction 
methods.​
 

84.​ How do you handle database migrations in Spring Boot?​
 

○​ Database migrations can be handled using tools like Liquibase or 
Flyway, which provide version-controlled SQL scripts to manage 
database changes.​
 

85.​ What is the purpose of the Spring Batch framework?​
 

○​ Spring Batch is used for batch processing jobs, such as reading, 
processing, and writing large volumes of data in a transactional 
manner.​
 



 

86.​ What is the significance of the 'volatile' keyword in Java?​
 

○​ The 'volatile' keyword ensures visibility of changes to a variable 
across threads, preventing optimization by the JVM.​
 

87.​ How do you handle cross-origin resource sharing (CORS) in 
Spring Boot?​
 

○​ CORS can be configured in Spring Boot using @CrossOrigin 
annotations or global configuration with WebMvcConfigurer.​
 

88.​ How do you implement logging in a Spring Boot application?​
 

○​ Logging can be implemented using libraries like Logback or 
SLF4J, and configuration can be done in 
application.properties or application.yml.​
 

89.​ What is the use of Spring Cloud Config?​
 

○​ Spring Cloud Config provides a centralized configuration 
management solution for distributed applications, allowing for 
dynamic configuration changes.​
 

90.​ What is the role of Redis in Java-based applications?​
 

○​ Redis is an in-memory data store that can be used for caching, 
session management, and message brokering in Java 
applications.​
 

91.​ What are the main differences between SQL and NoSQL 
databases?​
 

○​ SQL databases are relational, use structured data, and support 
ACID transactions, while NoSQL databases are non-relational, 
handle unstructured data, and offer scalability.​
 

92.​ What is an SQL injection, and how do you prevent it in a Java 
application?​
 



 

○​ SQL injection is a security vulnerability where malicious SQL 
statements are executed in a database query. It can be prevented 
by using parameterized queries and ORM frameworks like 
Hibernate.​
 

93.​ What is the use of OAuth2 in a Java application?​
 

○​ OAuth2 is an authorization framework that allows third-party 
services to access user resources without exposing user 
credentials.​
 

94.​ What is the role of Docker in Java Full Stack development?​
 

○​ Docker allows developers to containerize Java applications, 
ensuring consistency across different environments and 
simplifying deployment.​
 

95.​ How do you handle asynchronous processing in Spring Boot?​
 

○​ Asynchronous processing can be implemented in Spring Boot 
using @Async annotation or by leveraging message queues like 
RabbitMQ.​
 

96.​ What is the purpose of Spring Boot’s embedded Tomcat server?​
 

○​ Spring Boot’s embedded Tomcat server allows applications to run 
as stand-alone applications without needing a separate servlet 
container.​
 

97.​ How do you optimize database queries in a Java Full Stack 
application?​
 

○​ Database queries can be optimized by indexing, using query 
caching, and avoiding N+1 select problems.​
 

98.​ What is the difference between eager and lazy loading in 
Hibernate?​
 

○​ Eager loading fetches related entities immediately, while lazy 
loading fetches them only when needed, reducing initial loading 



 

time.​
 

99.​ How do you ensure security in a Java Full Stack application?​
 

○​ Security can be ensured using encryption, input validation, secure 
authentication, authorization, and protection against common 
threats like XSS and CSRF.​
 

100.​ What is a WebSocket and how is it used in Full Stack 
applications? - A WebSocket is a protocol for full-duplex 
communication between client and server, used in real-time applications 
like chat apps or live updates. 

 


	Basic Java Full Stack Interview Questions (1-25) 
	Intermediate Java Full Stack Interview Questions (26-50) 
	Advanced Java Full Stack Interview Questions (51-75) 
	Technical Java Full Stack Interview Questions (76-100) 

