
 

React Native 
 

Here is a list of 100 React Native interview questions and answers, categorized by basic, 
intermediate, advanced, and technical levels: 

Basic Questions (1-25) 

1.​ What is React Native?​
 

○​ React Native is a JavaScript framework used for building mobile applications 
for iOS and Android using the same codebase. It uses React and native 
components to build mobile apps.​
 

2.​ What is JSX in React Native?​
 

○​ JSX is a syntax extension for JavaScript. It looks similar to HTML, but it is 
used to describe what the UI should look like. It is later transformed into 
JavaScript code.​
 

3.​ What is the difference between React and React Native?​
 

○​ React is a library for building user interfaces for web applications, while React 
Native is a framework for building mobile applications using React.​
 

4.​ What are Props in React Native?​
 

○​ Props are the short form for properties. They are used to pass data from one 
component to another, making the component reusable.​
 

5.​ What is the use of State in React Native?​
 

○​ State is used to store and manage data within a component. It allows the 
component to re-render when the data changes.​
 

6.​ What is the purpose of componentDidMount in React Native?​
 

○​ componentDidMount is a lifecycle method in React that is called after a 
component is mounted. It's used for tasks like API calls or setting up 
subscriptions.​
 

7.​ What is the Virtual DOM in React Native?​
 

○​ The Virtual DOM is an in-memory representation of the real DOM elements. 
React Native uses it to optimize rendering by comparing the virtual DOM with 
the actual DOM and applying the minimal updates required.​
 



 

8.​ What are functional components in React Native?​
 

○​ Functional components are stateless components that are defined as 
JavaScript functions, which receive props as arguments and return JSX.​
 

9.​ What are class components in React Native?​
 

○​ Class components are components that extend React.Component and can 
hold state and lifecycle methods.​
 

10.​What are the advantages of using React Native?​
 

○​ It enables building cross-platform apps with a single codebase, offering faster 
development and a native-like performance experience.​
 

11.​What is useState hook in React Native?​
 

○​ useState is a Hook that allows you to add state to a functional component in 
React Native.​
 

12.​How do you create a component in React Native?​
 

○​ Components can be created using either JavaScript functions or ES6 classes. 
Functional components are more commonly used today.​
 

13.​What is the role of the render() method in React Native?​
 

○​ The render() method is used in class components to return the JSX that 
defines the structure of the component.​
 

14.​What is a key prop in React Native?​
 

○​ The key prop is a special string attribute used to help React identify which 
items have changed, are added, or are removed in a list.​
 

15.​What is the difference between state and props in React Native?​
 

○​ State is used to manage local data within a component, while props are 
used to pass data from a parent component to a child component.​
 

16.​What is the FlatList component in React Native?​
 

○​ FlatList is a performance-optimized component for rendering large lists of 
data. It only renders items that are currently visible on the screen.​
 



 

17.​What is StyleSheet in React Native?​
 

○​ StyleSheet is an abstraction for creating stylesheets in React Native. It 
uses a JavaScript object to define styles, which are then converted to native 
styles.​
 

18.​How do you make HTTP requests in React Native?​
 

○​ You can use fetch API or libraries like Axios to make HTTP requests in 
React Native.​
 

19.​What is the Text component in React Native?​
 

○​ The Text component is used to display text in React Native apps. It supports 
nesting and styling.​
 

20.​What are controlled components in React Native?​
 

○​ Controlled components are components where form data is handled by the 
React state, and the value of the input is controlled by state.​
 

21.​What is the TouchableOpacity component in React Native?​
 

○​ TouchableOpacity is a wrapper for making any element touchable and 
provides feedback with reduced opacity when touched.​
 

22.​What is the purpose of setState() in React Native?​
 

○​ setState() is used to update the state of a component, triggering a 
re-render of the component with the new state.​
 

23.​What is useEffect hook in React Native?​
 

○​ useEffect is a hook used to perform side effects in functional components, 
such as data fetching, subscriptions, or manually changing the DOM.​
 

24.​What are React Native's key performance optimization techniques?​
 

○​ Techniques include lazy loading, using FlatList for large data sets, 
optimizing images, and using native modules for performance-critical tasks.​
 

25.​How do you debug React Native applications?​
 

○​ Debugging can be done using tools like React Native Debugger, Chrome 
DevTools, and console.log statements for tracking issues.​
 



 

 

Intermediate Questions (26-50) 

26.​What is React Navigation in React Native?​
 

○​ React Navigation is a popular library used for navigation and routing in React 
Native applications. It provides stack, tab, and drawer navigation options.​
 

27.​What is the difference between useEffect and componentDidMount?​
 

○​ useEffect is for functional components and runs after every render, 
whereas componentDidMount is used in class components and runs once 
after the initial render.​
 

28.​How do you pass data between components in React Native?​
 

○​ Data can be passed from parent to child components via props or between 
sibling components using state management solutions like Context or 
third-party libraries.​
 

29.​What is Redux in React Native?​
 

○​ Redux is a state management library that helps manage the application state 
in a predictable way. It uses actions, reducers, and a single store to maintain 
state.​
 

30.​What is React Context API?​
 

○​ The Context API provides a way to pass data through the component tree 
without passing props manually at every level.​
 

31.​What are Higher Order Components (HOC) in React Native?​
 

○​ HOCs are functions that take a component and return a new component with 
enhanced functionality or behavior.​
 

32.​What is the purpose of the useReducer hook in React Native?​
 

○​ useReducer is used for managing complex state logic in functional 
components, especially when the state transitions are based on actions.​
 

33.​What is the difference between state and useState in React Native?​
 



 

○​ state is a class component concept, while useState is a hook used for 
managing state in functional components.​
 

34.​How do you optimize an app for better performance in React Native?​
 

○​ Techniques include reducing unnecessary renders, using FlatList for large 
lists, memoization with React.memo(), and using 
shouldComponentUpdate() in class components.​
 

35.​What is the difference between useCallback and useMemo hooks?​
 

○​ useCallback returns a memoized version of a function, while useMemo 
returns a memoized value based on dependencies.​
 

36.​What is the purpose of React Native Elements?​
 

○​ React Native Elements is a UI library that provides customizable and 
reusable UI components to simplify React Native development.​
 

37.​How do you handle navigation parameters in React Navigation?​
 

○​ Parameters can be passed via the navigation.navigate() function and 
accessed using route.params in the target screen component.​
 

38.​What is the FlatList performance optimization in React Native?​
 

○​ FlatList optimizes performance by rendering only the visible items and 
unloading items that are off-screen, which reduces memory consumption.​
 

39.​What is AsyncStorage in React Native?​
 

○​ AsyncStorage is a simple key-value store for storing data locally on the 
device, such as user preferences or session data.​
 

40.​How do you integrate native modules in React Native?​
 

○​ Native modules can be integrated by creating custom Java/Kotlin or 
Objective-C/Swift code that exposes functionality to JavaScript through a 
bridge.​
 

41.​What is react-native link and how is it used?​
 

○​ react-native link is a command used to link native dependencies to a 
React Native project. It automates the process of adding native code into a 



 

React Native app.​
 

42.​What is the role of AppRegistry in React Native?​
 

○​ AppRegistry is responsible for registering the root component of the app 
and scheduling the component to be rendered on the screen.​
 

43.​What are the differences between ScrollView and FlatList?​
 

○​ ScrollView renders all the child components at once, while FlatList 
renders only the visible items to improve performance.​
 

44.​What is a TouchableWithoutFeedback component in React Native?​
 

○​ TouchableWithoutFeedback is used to detect touch gestures and trigger 
an action, without the visual feedback like opacity change.​
 

45.​What is a Modal component in React Native?​
 

○​ A Modal is a component that renders content above the current view and can 
be used for dialogs, popups, or full-screen overlays.​
 

46.​How do you handle images in React Native?​
 

○​ Images can be handled using the Image component. You can either use local 
images from the assets or fetch images from remote URLs.​
 

47.​What is SafeAreaView in React Native?​
 

○​ SafeAreaView is a component that renders content within the safe area 
boundaries, preventing UI elements from overlapping with system UI (like 
notches or bottom bars).​
 

48.​How do you implement animations in React Native?​
 

○​ Animations in React Native can be created using the Animated library, which 
provides various types of animations such as translation, scaling, and opacity.​
 

49.​What is react-navigation-stack used for?​
 

○​ react-navigation-stack is a package that enables stack-based 
navigation in React Native, managing navigation between different screens 
with push and pop methods.​
 



 

50.​What is the role of React Native Debugger?​
 

○​ React Native Debugger is a debugging tool that combines Redux DevTools 
and Chrome DevTools to provide an enhanced debugging experience for 
React Native apps.​
 

 

Advanced Questions (51-75) 

51.​What is the purpose of using shouldComponentUpdate?​
 

○​ shouldComponentUpdate is used to optimize performance by preventing 
unnecessary re-renders when the component's state or props have not 
changed.​
 

52.​How does the React Native bridge work?​
 

○​ The React Native bridge enables communication between JavaScript and 
native modules. It allows JavaScript to call native code and vice versa using a 
bridge mechanism.​
 

53.​What is React Native Paper?​
 

○​ React Native Paper is a UI component library that implements Material 
Design for React Native apps, providing customizable components like 
buttons, cards, and dialogs.​
 

54.​How do you implement deep linking in React Native?​
 

○​ Deep linking in React Native can be implemented using the 
react-navigation library in combination with the Linking API to handle 
URLs and navigate to specific screens.​
 

55.​What are Hermes and its benefits in React Native?​
 

○​ Hermes is an open-source JavaScript engine optimized for React Native. It 
improves app startup time, reduces memory usage, and decreases APK size.​
 

56.​What is the difference between React Native's ActivityIndicator and 
Spinner?​
 

○​ ActivityIndicator is the standard React Native component for displaying 
loading indicators, while Spinner is a more customizable component often 



 

used in other UI libraries.​
 

57.​How do you configure Redux with React Native?​
 

○​ Redux is configured in React Native by setting up the createStore, 
Provider, and reducer functions, and connecting them to the components 
using connect or useSelector.​
 

58.​How does React Native handle background tasks?​
 

○​ React Native can handle background tasks through third-party libraries like 
react-native-background-fetch, which allows the app to perform 
background jobs like syncing data or sending notifications.​
 

59.​What is the role of getDerivedStateFromProps?​
 

○​ getDerivedStateFromProps is a lifecycle method in class components 
that is used to update the state based on changes in the props.​
 

60.​How do you handle state management in a large React Native application?​
 

○​ State management in large React Native apps is usually handled using 
Redux, Context API, or third-party solutions like Recoil or MobX.​
 

61.​How do you integrate Firebase with React Native?​
 

○​ Firebase is integrated with React Native using the 
react-native-firebase library. You configure Firebase in both Android 
and iOS projects and use Firebase services like authentication, database, 
and storage.​
 

62.​How do you manage form validation in React Native?​
 

○​ Form validation can be handled using libraries like Formik or React Hook 
Form in combination with validation libraries like Yup.​
 

63.​What is the React Native Web?​
 

○​ React Native Web is a project that enables React Native components to 
be used in web applications, allowing for shared codebases across web and 
mobile.​
 

64.​What is react-native-reanimated?​
 

○​ react-native-reanimated is a library for building complex animations 
with React Native. It provides a more performant and flexible approach to 



 

animations compared to the Animated API.​
 

65.​What is the role of Animated API in React Native?​
 

○​ The Animated API allows for smooth and declarative animations in React 
Native. It provides building blocks like Animated.View, Animated.Text, 
and more for creating animations.​
 

66.​How do you handle API error handling in React Native?​
 

○​ API error handling in React Native can be done using try-catch blocks, 
checking the response status, and displaying user-friendly error messages or 
alerts.​
 

67.​What is react-native-svg used for?​
 

○​ react-native-svg is a library used to render scalable vector graphics 
(SVG) in React Native, enabling the use of vector-based images for mobile 
apps.​
 

68.​What is the React Native CLI?​
 

○​ The React Native CLI is a command-line interface that is used to initialize and 
manage React Native projects, providing commands for running, building, and 
testing React Native apps.​
 

69.​What are React Native Navigation's major components?​
 

○​ Major components of React Native Navigation include Stack 
Navigator, Drawer Navigator, and Tab Navigator, which allow for 
organizing navigation flow between screens.​
 

70.​How do you handle performance issues in React Native?​
 

○​ Performance can be optimized using profiling tools, reducing unnecessary 
renders, lazy loading components, and using FlatList for large datasets.​
 

71.​What are React Native Gesture Handler and React Native 
Reanimated?​
 

○​ React Native Gesture Handler provides an API for handling gestures 
in a performant and flexible way, while React Native Reanimated is used 
for creating complex animations and transitions.​
 



 

72.​How do you implement a custom native module in React Native?​
 

○​ A custom native module can be created by writing platform-specific code 
(Java/Swift/Objective-C) and exposing it to JavaScript using the React Native 
bridge.​
 

73.​What is the purpose of useLayoutEffect in React Native?​
 

○​ useLayoutEffect is similar to useEffect, but it is called synchronously 
after the DOM has been painted, making it suitable for measuring DOM 
elements and performing layout-related tasks.​
 

74.​What is Expo in React Native?​
 

○​ Expo is a set of tools and libraries for React Native that simplifies the 
development process. It provides an easy way to build and deploy apps 
without the need for Xcode or Android Studio.​
 

75.​How do you use Firebase Cloud Messaging (FCM) with React Native?​
 

○​ Firebase Cloud Messaging can be integrated with React Native using the 
react-native-firebase package, allowing push notifications to be sent 
to users.​
 

 

Technical Questions (76-100) 

76.​How do you implement custom animations in React Native?​
 

○​ Custom animations can be created using the Animated API or 
react-native-reanimated by defining animation values and linking them 
to component styles.​
 

77.​How do you handle device-specific code in React Native?​
 

○​ Device-specific code can be handled using platform-specific file extensions 
(e.g., .ios.js, .android.js) or by using the Platform module to detect 
the device type.​
 

78.​How do you test a React Native application?​
 

○​ React Native applications can be tested using Jest for unit tests, 
react-native-testing-library for component tests, and detox for 
end-to-end testing.​
 



 

79.​How do you manage background tasks in React Native?​
 

○​ Background tasks can be managed using libraries like 
react-native-background-fetch or 
react-native-background-task to handle periodic tasks.​
 

80.​What are React Native’s major lifecycle methods?​
 

○​ React Native’s major lifecycle methods include componentDidMount, 
componentDidUpdate, componentWillUnmount, and 
shouldComponentUpdate.​
 

81.​How does React Native manage memory and garbage collection?​
 

○​ React Native uses JavaScript's automatic garbage collection system to 
manage memory. However, developers should be mindful of memory leaks 
caused by lingering references or events.​
 

82.​How do you bundle a React Native application for production?​
 

○​ A production bundle is created using react-native bundle command, 
which compiles JavaScript, images, and assets into a single file for 
production.​
 

83.​How do you implement theming in React Native?​
 

○​ Theming can be implemented using context or libraries like 
styled-components or react-native-paper to provide consistent 
styles across the app.​
 

84.​How do you optimize a React Native app for a faster startup?​
 

○​ Optimizations include reducing bundle size, lazy loading assets, using 
Hermes for improved JavaScript performance, and deferring non-essential 
tasks.​
 

85.​What is the Linking API in React Native?​
 

○​ Linking is used for deep linking and opening external URLs, such as 
opening a website or dialing a phone number.​
 

86.​How do you handle app navigation state persistence in React Native?​
 

○​ App navigation state persistence can be handled using libraries like 
redux-persist or by using React Navigation​
 



 

's state persistence options. 

87.​What is the difference between react-navigation and 
react-native-navigation?​
 

○​ react-navigation is a JavaScript-based navigation library, while 
react-native-navigation is a native navigation solution that provides 
better performance for large applications.​
 

88.​How do you access native modules in React Native?​
 

○​ Native modules are accessed using the bridge by invoking specific methods 
exposed by the native code via JavaScript.​
 

89.​What are some common performance bottlenecks in React Native?​
 

○​ Common performance bottlenecks include large component trees, 
non-optimal list rendering, excessive re-renders, and large image assets.​
 

90.​What is the role of async and await in React Native?​
 

○​ async and await are used for handling asynchronous operations in a more 
readable and maintainable way, avoiding callback hell.​
 

91.​How do you set up a CI/CD pipeline for React Native?​
 

○​ CI/CD pipelines can be set up using tools like Jenkins, CircleCI, or GitHub 
Actions, with automated builds, tests, and deployments.​
 

92.​How do you handle touch gestures in React Native?​
 

○​ Touch gestures can be handled using the 
react-native-gesture-handler library, which provides gesture 
recognition for tap, swipe, and drag interactions.​
 

93.​How do you use native modules to access device capabilities?​
 

○​ Native modules are created in platform-specific languages 
(Java/Swift/Objective-C) to access device features, and then exposed to 
JavaScript via the React Native bridge.​
 

94.​What is the difference between require and import in React Native?​
 

○​ require is used for loading modules at runtime, while import is a static 
import used for importing modules at compile-time.​
 



 

95.​How do you manage assets in React Native?​
 

○​ Assets can be managed by placing them in the appropriate directory and 
using require() or Image components to reference and display them in the 
app.​
 

96.​What are the best practices for optimizing React Native apps for performance?​
 

○​ Best practices include lazy loading components, using FlatList for lists, 
avoiding unnecessary re-renders, and optimizing image loading and memory 
usage.​
 

97.​How do you handle network requests and responses in React Native?​
 

○​ Network requests can be handled using the fetch API or Axios, and 
responses can be processed with promise chaining or async/await.​
 

98.​What is the purpose of using react-native-paper?​
 

○​ react-native-paper is a UI component library that implements Material 
Design for React Native apps, making it easier to build consistent and 
accessible interfaces.​
 

99.​How do you manage updates in React Native apps?​
 

○​ Updates are managed by creating new versions of the app and submitting 
them to the app stores or using over-the-air (OTA) updates with tools like 
CodePush.​
 

100.​ What is expo and how does it relate to React Native? - Expo is a framework 
that simplifies React Native development by providing a set of pre-configured 
libraries and tools for building and deploying apps quickly. 


	Basic Questions (1-25) 
	Intermediate Questions (26-50) 
	Advanced Questions (51-75) 
	Technical Questions (76-100) 

