

100 AngularJS interview questions Answers

Basic Level (1-25)

1.​ What is AngularJS?​

○​ AngularJS is a JavaScript framework developed by Google to build dynamic
web applications. It extends HTML with new attributes and uses a two-way
data binding feature.

2.​ What are the key features of AngularJS?​

○​ Two-way data binding
○​ Dependency injection
○​ MVC (Model-View-Controller) architecture
○​ Directives
○​ Filters
○​ Templates
○​ Routing

3.​ What is two-way data binding in AngularJS?​

○​ Two-way data binding means that any changes in the UI are immediately
reflected in the model and vice versa, eliminating the need for manual DOM
manipulation.

4.​ What is an AngularJS directive?​

○​ Directives are markers on DOM elements that tell AngularJS to attach specific
behaviors to elements. Example: ng-model, ng-bind, ng-repeat, etc.

5.​ What are the types of directives in AngularJS?​

○​ Attribute directives (e.g., ng-model)
○​ Element directives (e.g., <my-directive>)
○​ Comment directives (e.g., <!-- directive: myDirective -->)

6.​ What is the difference between $scope and controller in AngularJS?​

○​ $scope is an object that binds the view and controller, while the controller
defines the business logic of an application.

7.​ What is an AngularJS module?​

○​ A module in AngularJS is a container for different parts of an application, such
as controllers, services, directives, and filters.

How do you define an AngularJS module?​
​
 var app = angular.module('myApp', []);

8.​
9.​ What is an AngularJS controller?​

○​ A controller is a JavaScript function that controls the application’s data and

behavior. It is defined inside a module.

How do you define a controller in AngularJS?​
​
 app.controller('myCtrl', function($scope) {
 $scope.message = "Hello, AngularJS!";
});

10.​
11.​What is $scope in AngularJS?​

○​ $scope is an object that binds the view (HTML) and the controller. It acts as

a bridge between the model and the view.
12.​What is $rootScope in AngularJS?​

○​ $rootScope is a global scope object that is available across all controllers in

an AngularJS application.
13.​What is a filter in AngularJS?​

○​ A filter is used to format data displayed to the user. Example: uppercase,

lowercase, currency, date, etc.

How do you apply a filter in AngularJS?​
​
 {{ name | uppercase }}

14.​
15.​What is ng-repeat in AngularJS?​

○​ ng-repeat is a directive used to iterate over an array and display data

dynamically.

<li ng-repeat="item in items">{{ item }}

16.​
17.​What is ng-if in AngularJS?​

○​ ng-if conditionally renders an element based on a boolean expression.

18.​What is ng-show and ng-hide?​

○​ ng-show and ng-hide control the visibility of elements based on a
condition.

19.​What is $http in AngularJS?​

○​ $http is a service that allows communication with a remote server via HTTP
requests.

How do you make an HTTP GET request in AngularJS?​
​
 $http.get('/api/data').then(function(response) {
 $scope.data = response.data;
});

20.​
21.​What is $q in AngularJS?​

○​ $q is a service used for handling asynchronous operations (Promises).

22.​What is dependency injection in AngularJS?​

○​ Dependency injection (DI) is a design pattern used to inject dependencies
(services) into components.

23.​What is ng-model in AngularJS?​

○​ ng-model binds input, select, textarea elements to a property on the $scope
object.

24.​What is ng-class in AngularJS?​

○​ ng-class dynamically assigns CSS classes to elements based on
expressions.

25.​What is $watch in AngularJS?​

○​ $watch monitors changes in variables and executes a function when
changes occur.

 26.How do you define a custom directive in AngularJS?​
​
 app.directive('myDirective', function() {
 return {
 template: '<h1>Hello, Directive!</h1>'
 };
});

Here are the AngularJS Intermediate (27-50) and Advanced (51-100) interview
questions along with their answers:

Intermediate Level (27-50)

27. What is $timeout and $interval in AngularJS?

●​ $timeout is a wrapper around setTimeout used to execute a function after a
specified delay.

●​ $interval is a wrapper around setInterval used to execute a function
repeatedly at a fixed time interval.

$timeout(function() {

 console.log('Executed after 3 seconds');

}, 3000);

$interval(function() {

 console.log('Executed every 2 seconds');

}, 2000);

28. What are AngularJS services?

●​ Services in AngularJS are reusable singleton objects used to share common
functionality across controllers, directives, and filters.

●​ Example: $http, $location, $route, $timeout.

29. Explain the digest cycle in AngularJS.

●​ The digest cycle is a process in which AngularJS checks for changes in variables
($scope) and updates the DOM.

●​ It is triggered automatically but can also be manually invoked using $apply().

30. What are the different types of scopes in AngularJS?

1.​ Global Scope ($rootScope) – Accessible throughout the application.
2.​ Controller Scope ($scope) – Available only within the controller.
3.​ Isolated Scope – Used in directives to prevent scope pollution.

31. How do you create a factory in AngularJS?

●​ Factories in AngularJS return an object that contains methods and properties.

app.factory('myFactory', function() {

 return {

 greet: function() {

 return "Hello from Factory";

 }

 };

});

32. What is a singleton service in AngularJS?

●​ A singleton service is instantiated only once and shared across different components
in an application.

33. What is ngRoute in AngularJS?

●​ ngRoute is a module that allows navigation between views based on URLs.

34. How do you implement routing in AngularJS?

●​ Use $routeProvider to configure routes.

app.config(function($routeProvider) {

 $routeProvider

 .when('/home', {

 templateUrl: 'home.html',

 controller: 'HomeController'

 })

 .otherwise({ redirectTo: '/home' });

});

35. What is resolve in AngularJS routing?

●​ resolve ensures that data is loaded before a route is activated.

36. How does $location service work in AngularJS?

●​ $location allows manipulation of the browser URL within an AngularJS app.

$scope.changeURL = function() {

 $location.path('/newRoute');

};

37. What is lazy loading in AngularJS?

●​ Lazy loading allows modules, components, and dependencies to be loaded only
when required, improving performance.

38. What are AngularJS animations?

●​ Animations are created using the ngAnimate module and can be applied to
elements using ng-show, ng-hide, and ng-class.

39. How do you handle exceptions in AngularJS?

●​ Using $exceptionHandler to catch and log errors.

app.factory('$exceptionHandler', function() {

 return function(exception, cause) {

 console.error(exception.message);

 };

});

40. What is the purpose of $on, $emit, and $broadcast?

●​ $on – Listens for events.
●​ $emit – Sends an event upwards (parent scopes).
●​ $broadcast – Sends an event downwards (child scopes).

41. What are interceptors in AngularJS?

●​ Interceptors modify HTTP requests/responses globally.

app.factory('authInterceptor', function() {

 return {

 request: function(config) {

 config.headers.Authorization = 'Bearer token';

 return config;

 }

 };

});

42. How does $compile work in AngularJS?

●​ $compile is used to manually compile and link HTML templates dynamically.

43. What is $resource in AngularJS?

●​ $resource simplifies communication with RESTful APIs.

44. How do you share data between controllers in AngularJS?

●​ Using services or $rootScope.

45. What is ngSanitize in AngularJS?

●​ A module that prevents XSS (cross-site scripting) by sanitizing HTML input.

46. How does AngularJS handle security vulnerabilities?

●​ By using $sanitize, escaping input, and avoiding direct DOM manipulation.

47. How do you optimize an AngularJS application?

●​ Minify scripts, enable caching, use $watch efficiently, lazy load modules.

48. What are AngularJS decorators?

●​ Functions that modify the behavior of services.

49. What is $parse in AngularJS?

●​ $parse compiles expressions into functions that can be executed dynamically.

50. What is the difference between AngularJS and Angular (2+)?

Feature AngularJS Angular (2+)

Architecture MVC Component-base
d

Language JavaScript TypeScript

Data Binding Two-way One-way (default)

Performance Slower Faster

Mobile Support No Yes

Advanced Level (51-100)

51. How do you use $watchGroup in AngularJS?

●​ $watchGroup watches multiple scope variables at once.

$scope.$watchGroup(['var1', 'var2'], function(newValues, oldValues) {

 console.log(newValues);

});

52. Explain $evalAsync in AngularJS.

●​ $evalAsync schedules a task to be executed at the end of the current digest cycle.

53. What is $exceptionHandler in AngularJS?

●​ A service to handle errors globally.

54. How do you test an AngularJS application?

●​ Using Karma and Jasmine for unit testing.

55. What is ng-messages in AngularJS?

●​ Used for form validation messages.

56. How do you handle memory leaks in AngularJS?

●​ Unsubscribe from $on events and remove DOM elements when they are no longer
needed.

57. What is $cacheFactory in AngularJS?

●​ Used for caching data to improve performance.

58. Explain $animate in AngularJS.

●​ $animate module adds CSS-based animations to elements.

Here are the in-depth answers for AngularJS concepts (59-100), including migration,
performance tuning, testing, promises, third-party libraries, and best practices.

59. Migration from AngularJS to Angular (2+)
Migrating from AngularJS to Angular (2+) is a multi-step process:

1.​ Prepare AngularJS Codebase
○​ Remove unnecessary $scope dependencies.
○​ Convert AngularJS controllers to components.

2.​ Use ngUpgrade
○​ Use ngUpgrade to run both AngularJS and Angular code simultaneously.

import { UpgradeModule } from '@angular/upgrade/static';

3.​
4.​ Migrate Services

○​ Convert AngularJS services to Angular services and use dependency
injection.

5.​ Convert Directives
○​ Rewrite AngularJS directives as Angular components.

6.​ Remove AngularJS Code
○​ Fully transition to Angular and remove AngularJS dependencies.

60. Performance Tuning in AngularJS

1.​ Use $watch efficiently
○​ Minimize the number of watched variables.

$scope.$watch('variable', function(newValue) { /* Code */ });

2.​
3.​ Use One-Time Binding

○​ Improve performance by using :: for static values.

<h1>{{ ::title }}</h1>

4.​
5.​ Lazy Load Modules

○​ Load AngularJS modules only when needed.
6.​ Optimize DOM Manipulation

○​ Avoid heavy DOM manipulations inside controllers.

61. Unit Testing in AngularJS
Unit testing in AngularJS is done using Karma (test runner) and Jasmine (test
framework).

Install Karma and Jasmine​
 npm install -g karma jasmine

1.​

Write a simple test​
 describe('TestController', function() {

 beforeEach(module('myApp'));

 var $controller;

 beforeEach(inject(function(_$controller_) {

 $controller = _$controller_;

 }));

 it('should define a message', function() {

 var $scope = {};

 var controller = $controller('MyCtrl', { $scope: $scope });

 expect($scope.message).toBeDefined();

 });

});

2.​

Run tests​
 karma start

3.​

62. Using $q and defer for Promises in AngularJS

●​ $q is used for handling asynchronous operations.
●​ $q.defer() creates a deferred object that can be resolved or rejected later.

app.service('dataService', function($q, $http) {

 this.getData = function() {

 var deferred = $q.defer();

 $http.get('/api/data')

 .then(function(response) {

 deferred.resolve(response.data);

 })

 .catch(function(error) {

 deferred.reject(error);

 });

 return deferred.promise;

 };

});

63. Working with Third-Party Libraries in AngularJS
1.​ Include the library

○​ Use CDN or npm to include third-party libraries.

<script src="https://cdnjs.cloudflare.com/ajax/libs/moment.js/2.29.1/moment.min.js"></script>

2.​
3.​ Use $window or Services

○​ Inject the library in a service for better modularity.

app.factory('momentService', function($window) {

 return $window.moment;

});

4.​
5.​ Use AngularJS Wrappers

○​ Some libraries provide AngularJS-specific wrappers.

64. Custom Directive Best Practices in AngularJS
Use Isolated Scope​
 app.directive('myDirective', function() {

 return {

 scope: { title: '@' },

 template: '<h1>{{ title }}</h1>'

 };

});

1.​

Use Controller Instead of Link Function​
 app.directive('myDirective', function() {

 return {

 scope: {},

 controller: function($scope) {

 $scope.message = "Hello from directive!";

 },

 template: '<h1>{{ message }}</h1>'

 };

});

2.​

Restrict Directives Properly (E, A, C, M)​
 restrict: 'E' // Element only

3.​

65-100. Additional AngularJS In-Depth Concepts

65. Difference between $broadcast and $emit

●​ $broadcast sends an event downward to child scopes.
●​ $emit sends an event upward to parent scopes.

$scope.$broadcast('customEvent', { data: 'test' });

$scope.$emit('customEvent', { data: 'test' });

66. Best Practices for $http in AngularJS

1.​ Use .then() instead of success/error callbacks.
2.​ Enable caching to reduce redundant API calls.
3.​ Use interceptors for global request modifications.

$http.get('/api/data').then(response => console.log(response.data));

67. Managing $digest Cycle Efficiently

1.​ Reduce the number of $watch functions.
2.​ Use one-time binding where possible.
3.​ Manually trigger digest using $apply() only when needed.

68. Optimizing Directives for Performance

1.​ Avoid deep-watching objects ($watch with true).
2.​ Use bindToController instead of $scope.
3.​ Use the controllerAs syntax for cleaner code.

69. Implementing Caching in AngularJS

●​ Use $cacheFactory to store data in memory.

var cache = $cacheFactory('myCache');

cache.put('key', 'value');

console.log(cache.get('key')); // Output: value

70. AngularJS Memory Management and Preventing Leaks

Remove event listeners when scope is destroyed.​
 $scope.$on('$destroy', function() {

 element.off();

});

1.​
2.​ Avoid excessive $watch usage.

71. Best Practices for AngularJS Security

1.​ Enable CSP (Content Security Policy).
2.​ Sanitize user inputs using $sanitize.
3.​ Prevent CSRF (Cross-Site Request Forgery) by adding CSRF tokens in headers.

Here are the AngularJS interview questions and answers (72-100) covering debugging,
performance, server-side rendering, authentication, internationalization, and
large-scale application structuring.

72. How to Debug AngularJS Applications Efficiently?
1.​ Enable Debug Data

○​ Use angular.reloadWithDebugInfo() in the console.

Use console.log() and Breakpoints​
 console.log($scope.variable);

2.​
3.​ Use Batarang (Chrome DevTool Extension)

○​ Debug $scope variables, performance, and directives.

Enable Strict Dependency Injection​
 angular.module('myApp', []).config(['$provide', function($provide) {
 // Code here
}]);

4.​

Use $exceptionHandler for Error Logging​
 app.factory('$exceptionHandler', function() {
 return function(exception, cause) {
 console.error(exception.message);
 };
});

5.​

73. Using ngModelOptions to Optimize Form Input
Handling

●​ Problem: By default, ngModel updates $scope on every keystroke, causing
unnecessary digest cycles.

●​ Solution: Use ngModelOptions to control update behavior.

<input type="text" ng-model="username" ng-model-options="{ updateOn: 'blur' }">

●​ This updates the model only when the input loses focus.

74. Implementing Server-Side Rendering in AngularJS
Apps

●​ Problem: AngularJS applications render content on the client-side, which can hurt
SEO and performance.

●​ Solution: Use tools like Prerender.io or PhantomJS to generate static content on
the server.

Example using Prerender.io:​
 app.config(['$httpProvider', function($httpProvider) {
 $httpProvider.interceptors.push('prerenderInterceptor');
}]);

●​

75. How to Use $timeout Properly to Handle
Asynchronous Actions?

●​ $timeout ensures that changes are applied after a delay.

Example:​
 $timeout(function() {
 $scope.message = "Updated after 3 seconds";
}, 3000);

●​

Best Practice: Always cancel timeouts when scope is destroyed.​
 var timer = $timeout(function() { /* Action */ }, 5000);
$scope.$on('$destroy', function() {
 $timeout.cancel(timer);
});

●​

76. Structuring Large-Scale AngularJS Applications
1.​ Use Modules

○​ Split the app into feature-based modules.

angular.module('app.users', []);
angular.module('app.products', []);

2.​

Use the controllerAs Syntax​
 app.controller('UserController', function() {
 var vm = this;
 vm.name = "John";
});

3.​
4.​ Avoid $scope in Controllers

○​ Use services for shared data.
5.​ Lazy Load Components

○​ Use ocLazyLoad for on-demand loading.

77. How to Migrate Legacy AngularJS Projects with
Minimal Risk?

1.​ Hybrid Approach with ngUpgrade
○​ Run AngularJS and Angular together.

2.​ Convert Services First
○​ Migrate $http-based services to Angular.

3.​ Gradually Replace Components
○​ Move from AngularJS controllers to Angular components.

4.​ Rewrite Directives as Components
○​ Use Angular’s component-based architecture.

78. Best Practices for Using Third-Party Authentication
Libraries

1.​ Use OAuth-based authentication
○​ Firebase, Auth0, Okta, or Passport.js.

Use JWT (JSON Web Token) for Secure Authentication​
 $http.defaults.headers.common.Authorization = 'Bearer ' + token;

2.​
3.​ Store Tokens Securely

○​ Use sessionStorage or HttpOnly Cookies, never localStorage.

79. How to Use $locale for Internationalization in
AngularJS?
Load Locale-Specific Files​
 angular.module('myApp', ['ngLocale']);

1.​

Use $locale Service​
 app.controller('LocaleController', function($scope, $locale) {
 $scope.currency = $locale.NUMBER_FORMATS.CURRENCY_SYM;
});

2.​

Use angular-translate for Language Switching​
 $translate.use('fr');

3.​

80-100. Other Advanced AngularJS Topics

80. How to Prevent XSS (Cross-Site Scripting) in AngularJS?
Use $sanitize module:​
 <div ng-bind-html="trustedHTML | sanitize"></div>

●​

81. How to Optimize Filters for Performance?

●​ Avoid filtering large datasets inside the template.
●​ Use pagination instead of filtering everything.

82. What is the Best Way to Handle Large Lists in AngularJS?

●​ Use virtual scrolling with third-party libraries like angular-virtual-scroll.

Use limitTo filter:​
 <li ng-repeat="item in items | limitTo:50">

●​

83. How to Implement WebSockets in AngularJS?
Use $websocket Service​
 var ws = $websocket('wss://example.com/socket');
ws.onMessage(function(event) {
 console.log(event.data);
});

1.​
2.​ Use socket.io for real-time communication.

84. How to Improve Routing Performance in AngularJS?
Use resolve property to preload data before rendering a route.​
 $routeProvider.when('/dashboard', {
 templateUrl: 'dashboard.html',
 resolve: {
 data: function(DataService) {
 return DataService.getData();
 }
 }
});

●​

85. How to Secure AngularJS API Calls?

●​ Always use HTTPS.

●​ Implement token-based authentication.
●​ Use CSRF protection (XSRF-TOKEN).

86. What is $templateCache in AngularJS?
Stores templates in memory to reduce HTTP requests.​
 $templateCache.put('template.html', '<div>Hello</div>');

●​

87. How to Minimize Digest Cycle Execution Time?
Use $applyAsync() instead of $apply().​
 $scope.$applyAsync(function() {
 $scope.data = newData;
});

●​

88. How to Prevent Memory Leaks in AngularJS?

●​ Use $destroy event to clean up resources.
●​ Unbind event listeners.

89. How to Integrate AngularJS with React?

●​ Use AngularJS directives to wrap React components.

90. How to Enable Debugging Mode in AngularJS?

●​ Use angular.reloadWithDebugInfo().

Here are questions 91-100 with detailed answers on advanced AngularJS topics,
including testing, infinite scrolling, scope management, drag-and-drop, and state
management. 🚀

91. Using $httpBackend for Mocking API Calls in Tests

In unit testing, $httpBackend allows you to mock HTTP requests instead of making real
API calls.

Example: Mocking an API Response
describe('DataService Test', function() {
 var $httpBackend, DataService;

 beforeEach(module('myApp'));
 beforeEach(inject(function(_$httpBackend_, _DataService_) {
 $httpBackend = _$httpBackend_;
 DataService = _DataService_;
 }));

 it('should return mocked data', function() {
 var mockResponse = { name: 'John Doe' };

 $httpBackend.whenGET('/api/user').respond(mockResponse);

 DataService.getUser().then(function(response) {
 expect(response.data).toEqual(mockResponse);
 });

 $httpBackend.flush(); // Triggers the response
 });

 afterEach(function() {
 $httpBackend.verifyNoOutstandingExpectation();
 $httpBackend.verifyNoOutstandingRequest();
 });
});

✅ $httpBackend.flush() ensures all mocked requests are processed.​
 ✅ Helps in unit testing without actual API calls.

92. Implementing Infinite Scrolling in AngularJS
Infinite scrolling loads more data as the user scrolls down.

Example: Using ngInfiniteScroll
Install ngInfiniteScroll​
 npm install ng-infinite-scroll

1.​

Add it to your module​
 angular.module('myApp', ['infinite-scroll']);

2.​

Use it in the template​
 <div ng-repeat="item in items" infinite-scroll="loadMore()">
 {{ item.name }}
</div>

3.​

Define loadMore() in Controller​
 $scope.items = [...]; // Initial data
$scope.loadMore = function() {
 DataService.getMoreItems().then(function(newItems) {
 $scope.items = $scope.items.concat(newItems);
 });
};

4.​

✅ Ensures a smooth user experience without reloading the page.

93. Differences Between $timeout, $interval, and
$digest

Feature $timeout $interval $digest

Purpos
e

Executes a function
after a delay

Executes repeatedly at
a fixed interval

Manually triggers the
digest cycle

Use
Case

Delayed execution (like
setTimeout)

Periodic execution (like
setInterval)

When Angular does not
detect changes

Exampl
e

$timeout(fn,
2000);

$interval(fn,
1000);

$scope.$digest();

Example Usage
$timeout(function() {
 console.log("Executed after 2 seconds");
}, 2000);

var interval = $interval(function() {
 console.log("Repeats every 1 second");

}, 1000);

$scope.$watch('variable', function(newValue) {
 console.log("Manually triggered digest cycle");
 $scope.$digest();
});

✅ $timeout and $interval schedule execution, while $digest forces updates.

94. How to Avoid Scope Pollution in Large
Applications?

Scope pollution happens when too many variables are stored in $scope, causing
memory leaks.

Best Practices to Prevent Scope Pollution
Use controllerAs syntax instead of $scope​
​
 app.controller('MainController', function() {
 var vm = this;
 vm.title = "Hello, World!";
});
 <h1>{{ ctrl.title }}</h1>

1.​

Use Services for Shared Data​
​
 app.service('UserService', function() {
 this.user = { name: "John Doe" };
});

app.controller('UserCtrl', function(UserService) {
 this.user = UserService.user;
});

2.​

Destroy $scope when Controller Unloads​
​
 $scope.$on('$destroy', function() {
 $scope.variable = null;
});

3.​

✅ These practices improve performance and reduce memory leaks.

95. Implementing Drag-and-Drop Features in AngularJS

You can use ngDragDrop or HTML5's native Drag-and-Drop API.

Example: Using ngDragDrop
Install the module​
 npm install angular-dragdrop

1.​

Include it in the app​
 angular.module('myApp', ['ngDragDrop']);

2.​

Create Drag and Drop Areas​
 <div ng-drag="true" ng-model="item">Drag Me</div>
<div ng-drop="true" ng-model="droppedItem">Drop Here</div>

3.​

✅ Provides an easy drag-and-drop experience with minimal setup.

96. Using Redux-Like State Management in AngularJS
AngularJS doesn’t have built-in state management, but you can use Redux-like patterns.

Example: Using angular-redux
Install Redux for AngularJS​
 npm install @angular-redux/store

1.​

Create a Store​
 app.factory('store', function() {
 var state = { count: 0 };
 return {
 getState: function() { return state; },
 dispatch: function(action) {

 if (action.type === 'INCREMENT') {
 state.count++;
 }
 }
 };
});

2.​

Use Store in a Controller​
 app.controller('CounterCtrl', function($scope, store) {
 $scope.count = store.getState().count;
 $scope.increment = function() {
 store.dispatch({ type: 'INCREMENT' });
 $scope.count = store.getState().count;
 };
});

3.​

Use in HTML​
 <button ng-click="increment()">Increment</button>
<p>Count: {{ count }}</p>

4.​

✅ Manages state globally like Redux in React.

97-100. Other Advanced Topics

97. How to Handle Large Data Sets Efficiently in AngularJS?

●​ Use pagination instead of loading everything at once.
●​ Optimize $watch and use track by in ng-repeat.

98. What is the Best Way to Handle User Authentication in AngularJS?

●​ Use JWT (JSON Web Tokens) and store tokens securely in HttpOnly cookies.

99. How to Optimize AngularJS for Mobile Performance?

●​ Avoid heavy DOM manipulations.
●​ Use CSS animations instead of JavaScript.

100. How to Integrate AngularJS with Modern Frameworks?

●​ Use ngUpgrade for migrating to Angular.
●​ Wrap AngularJS components inside React/Angular Elements.

	Basic Level (1-25)
	Intermediate Level (27-50)
	27. What is $timeout and $interval in AngularJS?
	28. What are AngularJS services?
	29. Explain the digest cycle in AngularJS.
	30. What are the different types of scopes in AngularJS?
	31. How do you create a factory in AngularJS?
	32. What is a singleton service in AngularJS?
	33. What is ngRoute in AngularJS?
	34. How do you implement routing in AngularJS?
	35. What is resolve in AngularJS routing?
	36. How does $location service work in AngularJS?
	37. What is lazy loading in AngularJS?
	38. What are AngularJS animations?
	39. How do you handle exceptions in AngularJS?
	40. What is the purpose of $on, $emit, and $broadcast?
	41. What are interceptors in AngularJS?
	42. How does $compile work in AngularJS?
	43. What is $resource in AngularJS?
	44. How do you share data between controllers in AngularJS?
	45. What is ngSanitize in AngularJS?
	46. How does AngularJS handle security vulnerabilities?
	47. How do you optimize an AngularJS application?
	48. What are AngularJS decorators?
	49. What is $parse in AngularJS?
	50. What is the difference between AngularJS and Angular (2+)?

	Advanced Level (51-100)
	51. How do you use $watchGroup in AngularJS?
	52. Explain $evalAsync in AngularJS.
	53. What is $exceptionHandler in AngularJS?
	54. How do you test an AngularJS application?
	55. What is ng-messages in AngularJS?
	56. How do you handle memory leaks in AngularJS?
	57. What is $cacheFactory in AngularJS?
	58. Explain $animate in AngularJS.

	59. Migration from AngularJS to Angular (2+)
	60. Performance Tuning in AngularJS
	61. Unit Testing in AngularJS
	62. Using $q and defer for Promises in AngularJS
	63. Working with Third-Party Libraries in AngularJS
	64. Custom Directive Best Practices in AngularJS
	65-100. Additional AngularJS In-Depth Concepts
	65. Difference between $broadcast and $emit
	66. Best Practices for $http in AngularJS
	67. Managing $digest Cycle Efficiently
	68. Optimizing Directives for Performance
	69. Implementing Caching in AngularJS
	70. AngularJS Memory Management and Preventing Leaks
	71. Best Practices for AngularJS Security

	72. How to Debug AngularJS Applications Efficiently?
	73. Using ngModelOptions to Optimize Form Input Handling
	74. Implementing Server-Side Rendering in AngularJS Apps
	75. How to Use $timeout Properly to Handle Asynchronous Actions?
	76. Structuring Large-Scale AngularJS Applications
	77. How to Migrate Legacy AngularJS Projects with Minimal Risk?
	78. Best Practices for Using Third-Party Authentication Libraries
	79. How to Use $locale for Internationalization in AngularJS?
	80-100. Other Advanced AngularJS Topics
	80. How to Prevent XSS (Cross-Site Scripting) in AngularJS?
	81. How to Optimize Filters for Performance?
	82. What is the Best Way to Handle Large Lists in AngularJS?
	83. How to Implement WebSockets in AngularJS?
	84. How to Improve Routing Performance in AngularJS?
	85. How to Secure AngularJS API Calls?
	86. What is $templateCache in AngularJS?
	87. How to Minimize Digest Cycle Execution Time?
	88. How to Prevent Memory Leaks in AngularJS?
	89. How to Integrate AngularJS with React?
	90. How to Enable Debugging Mode in AngularJS?

	91. Using $httpBackend for Mocking API Calls in Tests
	Example: Mocking an API Response

	92. Implementing Infinite Scrolling in AngularJS
	Example: Using ngInfiniteScroll

	93. Differences Between $timeout, $interval, and $digest
	Example Usage

	94. How to Avoid Scope Pollution in Large Applications?
	Best Practices to Prevent Scope Pollution

	95. Implementing Drag-and-Drop Features in AngularJS
	Example: Using ngDragDrop

	96. Using Redux-Like State Management in AngularJS
	Example: Using angular-redux

	97-100. Other Advanced Topics
	97. How to Handle Large Data Sets Efficiently in AngularJS?
	98. What is the Best Way to Handle User Authentication in AngularJS?
	99. How to Optimize AngularJS for Mobile Performance?
	100. How to Integrate AngularJS with Modern Frameworks?

