
 

100 AngularJS interview questions Answers 

 

Basic Level (1-25) 

1.​ What is AngularJS?​
 

○​ AngularJS is a JavaScript framework developed by Google to build dynamic 
web applications. It extends HTML with new attributes and uses a two-way 
data binding feature. 

2.​ What are the key features of AngularJS?​
 

○​ Two-way data binding 
○​ Dependency injection 
○​ MVC (Model-View-Controller) architecture 
○​ Directives 
○​ Filters 
○​ Templates 
○​ Routing 

3.​ What is two-way data binding in AngularJS?​
 

○​ Two-way data binding means that any changes in the UI are immediately 
reflected in the model and vice versa, eliminating the need for manual DOM 
manipulation. 

4.​ What is an AngularJS directive?​
 

○​ Directives are markers on DOM elements that tell AngularJS to attach specific 
behaviors to elements. Example: ng-model, ng-bind, ng-repeat, etc. 

5.​ What are the types of directives in AngularJS?​
 

○​ Attribute directives (e.g., ng-model) 
○​ Element directives (e.g., <my-directive>) 
○​ Comment directives (e.g., <!-- directive: myDirective -->) 

6.​ What is the difference between $scope and controller in AngularJS?​
 

○​ $scope is an object that binds the view and controller, while the controller 
defines the business logic of an application. 

7.​ What is an AngularJS module?​
 

○​ A module in AngularJS is a container for different parts of an application, such 
as controllers, services, directives, and filters. 

How do you define an AngularJS module?​
​
 var app = angular.module('myApp', []); 



 

8.​  
9.​ What is an AngularJS controller?​

 
○​ A controller is a JavaScript function that controls the application’s data and 

behavior. It is defined inside a module. 

How do you define a controller in AngularJS?​
​
 app.controller('myCtrl', function($scope) { 
    $scope.message = "Hello, AngularJS!"; 
}); 

10.​ 
11.​What is $scope in AngularJS?​

 
○​ $scope is an object that binds the view (HTML) and the controller. It acts as 

a bridge between the model and the view. 
12.​What is $rootScope in AngularJS?​

 
○​ $rootScope is a global scope object that is available across all controllers in 

an AngularJS application. 
13.​What is a filter in AngularJS?​

 
○​ A filter is used to format data displayed to the user. Example: uppercase, 

lowercase, currency, date, etc. 

How do you apply a filter in AngularJS?​
​
 {{ name | uppercase }} 

14.​ 
15.​What is ng-repeat in AngularJS?​

 
○​ ng-repeat is a directive used to iterate over an array and display data 

dynamically. 

<li ng-repeat="item in items">{{ item }}</li> 

16.​ 
17.​What is ng-if in AngularJS?​

 
○​ ng-if conditionally renders an element based on a boolean expression. 

18.​What is ng-show and ng-hide?​
 

○​ ng-show and ng-hide control the visibility of elements based on a 
condition. 



 

19.​What is $http in AngularJS?​
 

○​ $http is a service that allows communication with a remote server via HTTP 
requests. 

How do you make an HTTP GET request in AngularJS?​
​
 $http.get('/api/data').then(function(response) { 
    $scope.data = response.data; 
}); 

20.​ 
21.​What is $q in AngularJS?​

 
○​ $q is a service used for handling asynchronous operations (Promises). 

22.​What is dependency injection in AngularJS?​
 

○​ Dependency injection (DI) is a design pattern used to inject dependencies 
(services) into components. 

23.​What is ng-model in AngularJS?​
 

○​ ng-model binds input, select, textarea elements to a property on the $scope 
object. 

24.​What is ng-class in AngularJS?​
 

○​ ng-class dynamically assigns CSS classes to elements based on 
expressions. 

25.​What is $watch in AngularJS?​
 

○​ $watch monitors changes in variables and executes a function when 
changes occur. 

      26.How do you define a custom directive in AngularJS?​
​
 app.directive('myDirective', function() { 
    return { 
        template: '<h1>Hello, Directive!</h1>' 
    }; 
}); 

Here are the AngularJS Intermediate (27-50) and Advanced (51-100) interview 
questions along with their answers: 

 

Intermediate Level (27-50) 



 

27. What is $timeout and $interval in AngularJS? 

●​ $timeout is a wrapper around setTimeout used to execute a function after a 
specified delay. 

●​ $interval is a wrapper around setInterval used to execute a function 
repeatedly at a fixed time interval. 

$timeout(function() { 

    console.log('Executed after 3 seconds'); 

}, 3000); 

 

$interval(function() { 

    console.log('Executed every 2 seconds'); 

}, 2000); 

 

 

28. What are AngularJS services? 

●​ Services in AngularJS are reusable singleton objects used to share common 
functionality across controllers, directives, and filters. 

●​ Example: $http, $location, $route, $timeout. 

 

29. Explain the digest cycle in AngularJS. 

●​ The digest cycle is a process in which AngularJS checks for changes in variables 
($scope) and updates the DOM. 

●​ It is triggered automatically but can also be manually invoked using $apply(). 

 

30. What are the different types of scopes in AngularJS? 

1.​ Global Scope ($rootScope) – Accessible throughout the application. 
2.​ Controller Scope ($scope) – Available only within the controller. 
3.​ Isolated Scope – Used in directives to prevent scope pollution. 

 



 

31. How do you create a factory in AngularJS? 

●​ Factories in AngularJS return an object that contains methods and properties. 

app.factory('myFactory', function() { 

    return { 

        greet: function() { 

            return "Hello from Factory"; 

        } 

    }; 

}); 

 

 

32. What is a singleton service in AngularJS? 

●​ A singleton service is instantiated only once and shared across different components 
in an application. 

 

33. What is ngRoute in AngularJS? 

●​ ngRoute is a module that allows navigation between views based on URLs. 

 

34. How do you implement routing in AngularJS? 

●​ Use $routeProvider to configure routes. 

app.config(function($routeProvider) { 

    $routeProvider 

        .when('/home', { 

            templateUrl: 'home.html', 

            controller: 'HomeController' 

        }) 



 

        .otherwise({ redirectTo: '/home' }); 

}); 

 

 

35. What is resolve in AngularJS routing? 

●​ resolve ensures that data is loaded before a route is activated. 

 

36. How does $location service work in AngularJS? 

●​ $location allows manipulation of the browser URL within an AngularJS app. 

$scope.changeURL = function() { 

    $location.path('/newRoute'); 

}; 

 

 

37. What is lazy loading in AngularJS? 

●​ Lazy loading allows modules, components, and dependencies to be loaded only 
when required, improving performance. 

 

38. What are AngularJS animations? 

●​ Animations are created using the ngAnimate module and can be applied to 
elements using ng-show, ng-hide, and ng-class. 

 

39. How do you handle exceptions in AngularJS? 

●​ Using $exceptionHandler to catch and log errors. 

app.factory('$exceptionHandler', function() { 

    return function(exception, cause) { 



 

        console.error(exception.message); 

    }; 

}); 

 

 

40. What is the purpose of $on, $emit, and $broadcast? 

●​ $on – Listens for events. 
●​ $emit – Sends an event upwards (parent scopes). 
●​ $broadcast – Sends an event downwards (child scopes). 

 

41. What are interceptors in AngularJS? 

●​ Interceptors modify HTTP requests/responses globally. 

app.factory('authInterceptor', function() { 

    return { 

        request: function(config) { 

            config.headers.Authorization = 'Bearer token'; 

            return config; 

        } 

    }; 

}); 

 

 

42. How does $compile work in AngularJS? 

●​ $compile is used to manually compile and link HTML templates dynamically. 

 

43. What is $resource in AngularJS? 



 

●​ $resource simplifies communication with RESTful APIs. 

 

44. How do you share data between controllers in AngularJS? 

●​ Using services or $rootScope. 

 

45. What is ngSanitize in AngularJS? 

●​ A module that prevents XSS (cross-site scripting) by sanitizing HTML input. 

 

46. How does AngularJS handle security vulnerabilities? 

●​ By using $sanitize, escaping input, and avoiding direct DOM manipulation. 

 

47. How do you optimize an AngularJS application? 

●​ Minify scripts, enable caching, use $watch efficiently, lazy load modules. 

 

48. What are AngularJS decorators? 

●​ Functions that modify the behavior of services. 

 

49. What is $parse in AngularJS? 

●​ $parse compiles expressions into functions that can be executed dynamically. 

 

50. What is the difference between AngularJS and Angular (2+)? 

Feature AngularJS Angular (2+) 



 

Architecture MVC Component-base
d 

Language JavaScript TypeScript 

Data Binding Two-way One-way (default) 

Performance Slower Faster 

Mobile Support No Yes 

 

Advanced Level (51-100) 

51. How do you use $watchGroup in AngularJS? 

●​ $watchGroup watches multiple scope variables at once. 

$scope.$watchGroup(['var1', 'var2'], function(newValues, oldValues) { 

    console.log(newValues); 

}); 

 

 

52. Explain $evalAsync in AngularJS. 

●​ $evalAsync schedules a task to be executed at the end of the current digest cycle. 

 

53. What is $exceptionHandler in AngularJS? 

●​ A service to handle errors globally. 

 



 

54. How do you test an AngularJS application? 

●​ Using Karma and Jasmine for unit testing. 

 

55. What is ng-messages in AngularJS? 

●​ Used for form validation messages. 

 

56. How do you handle memory leaks in AngularJS? 

●​ Unsubscribe from $on events and remove DOM elements when they are no longer 
needed. 

 

57. What is $cacheFactory in AngularJS? 

●​ Used for caching data to improve performance. 

 

58. Explain $animate in AngularJS. 

●​ $animate module adds CSS-based animations to elements. 

 

Here are the in-depth answers for AngularJS concepts (59-100), including migration, 
performance tuning, testing, promises, third-party libraries, and best practices. 

 

59. Migration from AngularJS to Angular (2+) 
Migrating from AngularJS to Angular (2+) is a multi-step process: 

1.​ Prepare AngularJS Codebase 
○​ Remove unnecessary $scope dependencies. 
○​ Convert AngularJS controllers to components. 

2.​ Use ngUpgrade 
○​ Use ngUpgrade to run both AngularJS and Angular code simultaneously. 

import { UpgradeModule } from '@angular/upgrade/static'; 



 

3.​  
4.​ Migrate Services 

○​ Convert AngularJS services to Angular services and use dependency 
injection. 

5.​ Convert Directives 
○​ Rewrite AngularJS directives as Angular components. 

6.​ Remove AngularJS Code 
○​ Fully transition to Angular and remove AngularJS dependencies. 

 

60. Performance Tuning in AngularJS 

1.​ Use $watch efficiently 
○​ Minimize the number of watched variables. 

$scope.$watch('variable', function(newValue) { /* Code */ }); 

2.​  
3.​ Use One-Time Binding 

○​ Improve performance by using :: for static values. 

<h1>{{ ::title }}</h1> 

4.​  
5.​ Lazy Load Modules 

○​ Load AngularJS modules only when needed. 
6.​ Optimize DOM Manipulation 

○​ Avoid heavy DOM manipulations inside controllers. 

 

61. Unit Testing in AngularJS 
Unit testing in AngularJS is done using Karma (test runner) and Jasmine (test 
framework). 

Install Karma and Jasmine​
 npm install -g karma jasmine 

1.​  

Write a simple test​
 describe('TestController', function() { 

    beforeEach(module('myApp')); 

 



 

    var $controller; 

    beforeEach(inject(function(_$controller_) { 

        $controller = _$controller_; 

    })); 

 

    it('should define a message', function() { 

        var $scope = {}; 

        var controller = $controller('MyCtrl', { $scope: $scope }); 

        expect($scope.message).toBeDefined(); 

    }); 

}); 

2.​  

Run tests​
 karma start 

3.​  

 

62. Using $q and defer for Promises in AngularJS 

●​ $q is used for handling asynchronous operations. 
●​ $q.defer() creates a deferred object that can be resolved or rejected later. 

app.service('dataService', function($q, $http) { 

    this.getData = function() { 

        var deferred = $q.defer(); 

        $http.get('/api/data') 

            .then(function(response) { 

                deferred.resolve(response.data); 

            }) 



 

            .catch(function(error) { 

                deferred.reject(error); 

            }); 

        return deferred.promise; 

    }; 

}); 

 

 

63. Working with Third-Party Libraries in AngularJS 
1.​ Include the library 

○​ Use CDN or npm to include third-party libraries. 

<script src="https://cdnjs.cloudflare.com/ajax/libs/moment.js/2.29.1/moment.min.js"></script> 

2.​  
3.​ Use $window or Services 

○​ Inject the library in a service for better modularity. 

app.factory('momentService', function($window) { 

    return $window.moment; 

}); 

4.​  
5.​ Use AngularJS Wrappers 

○​ Some libraries provide AngularJS-specific wrappers. 

 

64. Custom Directive Best Practices in AngularJS 
Use Isolated Scope​
 app.directive('myDirective', function() { 

    return { 

        scope: { title: '@' }, 

        template: '<h1>{{ title }}</h1>' 



 

    }; 

}); 

1.​  

Use Controller Instead of Link Function​
 app.directive('myDirective', function() { 

    return { 

        scope: {}, 

        controller: function($scope) { 

            $scope.message = "Hello from directive!"; 

        }, 

        template: '<h1>{{ message }}</h1>' 

    }; 

}); 

2.​  

Restrict Directives Properly (E, A, C, M)​
 restrict: 'E' // Element only 

3.​  

 

65-100. Additional AngularJS In-Depth Concepts 

65. Difference between $broadcast and $emit 

●​ $broadcast sends an event downward to child scopes. 
●​ $emit sends an event upward to parent scopes. 

$scope.$broadcast('customEvent', { data: 'test' }); 

$scope.$emit('customEvent', { data: 'test' }); 

 

 



 

66. Best Practices for $http in AngularJS 

1.​ Use .then() instead of success/error callbacks. 
2.​ Enable caching to reduce redundant API calls. 
3.​ Use interceptors for global request modifications. 

$http.get('/api/data').then(response => console.log(response.data)); 

 

 

67. Managing $digest Cycle Efficiently 

1.​ Reduce the number of $watch functions. 
2.​ Use one-time binding where possible. 
3.​ Manually trigger digest using $apply() only when needed. 

 

68. Optimizing Directives for Performance 

1.​ Avoid deep-watching objects ($watch with true). 
2.​ Use bindToController instead of $scope. 
3.​ Use the controllerAs syntax for cleaner code. 

 

69. Implementing Caching in AngularJS 

●​ Use $cacheFactory to store data in memory. 

var cache = $cacheFactory('myCache'); 

cache.put('key', 'value'); 

console.log(cache.get('key')); // Output: value 

 

 

70. AngularJS Memory Management and Preventing Leaks 

Remove event listeners when scope is destroyed.​
 $scope.$on('$destroy', function() { 

    element.off(); 



 

}); 

1.​  
2.​ Avoid excessive $watch usage. 

 

71. Best Practices for AngularJS Security 

1.​ Enable CSP (Content Security Policy). 
2.​ Sanitize user inputs using $sanitize. 
3.​ Prevent CSRF (Cross-Site Request Forgery) by adding CSRF tokens in headers. 

 

Here are the AngularJS interview questions and answers (72-100) covering debugging, 
performance, server-side rendering, authentication, internationalization, and 
large-scale application structuring. 

 

72. How to Debug AngularJS Applications Efficiently? 
1.​ Enable Debug Data 

○​ Use angular.reloadWithDebugInfo() in the console. 

Use console.log() and Breakpoints​
 console.log($scope.variable); 

2.​  
3.​ Use Batarang (Chrome DevTool Extension) 

○​ Debug $scope variables, performance, and directives. 

Enable Strict Dependency Injection​
 angular.module('myApp', []).config(['$provide', function($provide) { 
    // Code here 
}]); 

4.​  

Use $exceptionHandler for Error Logging​
 app.factory('$exceptionHandler', function() { 
    return function(exception, cause) { 
        console.error(exception.message); 
    }; 
}); 

5.​  



 

 

73. Using ngModelOptions to Optimize Form Input 
Handling 

●​ Problem: By default, ngModel updates $scope on every keystroke, causing 
unnecessary digest cycles. 

●​ Solution: Use ngModelOptions to control update behavior. 

<input type="text" ng-model="username" ng-model-options="{ updateOn: 'blur' }"> 
 

●​ This updates the model only when the input loses focus. 

 

74. Implementing Server-Side Rendering in AngularJS 
Apps 

●​ Problem: AngularJS applications render content on the client-side, which can hurt 
SEO and performance. 

●​ Solution: Use tools like Prerender.io or PhantomJS to generate static content on 
the server. 

Example using Prerender.io:​
 app.config(['$httpProvider', function($httpProvider) { 
    $httpProvider.interceptors.push('prerenderInterceptor'); 
}]); 

●​  

 

75. How to Use $timeout Properly to Handle 
Asynchronous Actions? 

●​ $timeout ensures that changes are applied after a delay. 

Example:​
 $timeout(function() { 
    $scope.message = "Updated after 3 seconds"; 
}, 3000); 

●​  



 

Best Practice: Always cancel timeouts when scope is destroyed.​
 var timer = $timeout(function() { /* Action */ }, 5000); 
$scope.$on('$destroy', function() { 
    $timeout.cancel(timer); 
}); 

●​  

 

76. Structuring Large-Scale AngularJS Applications 
1.​ Use Modules 

○​ Split the app into feature-based modules. 

angular.module('app.users', []); 
angular.module('app.products', []); 

2.​  

Use the controllerAs Syntax​
 app.controller('UserController', function() { 
    var vm = this; 
    vm.name = "John"; 
}); 

3.​  
4.​ Avoid $scope in Controllers 

○​ Use services for shared data. 
5.​ Lazy Load Components 

○​ Use ocLazyLoad for on-demand loading. 

 

77. How to Migrate Legacy AngularJS Projects with 
Minimal Risk? 

1.​ Hybrid Approach with ngUpgrade 
○​ Run AngularJS and Angular together. 

2.​ Convert Services First 
○​ Migrate $http-based services to Angular. 

3.​ Gradually Replace Components 
○​ Move from AngularJS controllers to Angular components. 

4.​ Rewrite Directives as Components 
○​ Use Angular’s component-based architecture. 

 



 

78. Best Practices for Using Third-Party Authentication 
Libraries 

1.​ Use OAuth-based authentication 
○​ Firebase, Auth0, Okta, or Passport.js. 

Use JWT (JSON Web Token) for Secure Authentication​
 $http.defaults.headers.common.Authorization = 'Bearer ' + token; 

2.​  
3.​ Store Tokens Securely 

○​ Use sessionStorage or HttpOnly Cookies, never localStorage. 

 

79. How to Use $locale for Internationalization in 
AngularJS? 
Load Locale-Specific Files​
 angular.module('myApp', ['ngLocale']); 

1.​  

Use $locale Service​
 app.controller('LocaleController', function($scope, $locale) { 
    $scope.currency = $locale.NUMBER_FORMATS.CURRENCY_SYM; 
}); 

2.​  

Use angular-translate for Language Switching​
 $translate.use('fr'); 

3.​  

 

80-100. Other Advanced AngularJS Topics 

80. How to Prevent XSS (Cross-Site Scripting) in AngularJS? 
Use $sanitize module:​
 <div ng-bind-html="trustedHTML | sanitize"></div> 

●​  

 



 

81. How to Optimize Filters for Performance? 

●​ Avoid filtering large datasets inside the template. 
●​ Use pagination instead of filtering everything. 

 

82. What is the Best Way to Handle Large Lists in AngularJS? 

●​ Use virtual scrolling with third-party libraries like angular-virtual-scroll. 

Use limitTo filter:​
 <li ng-repeat="item in items | limitTo:50"></li> 

●​  

 

83. How to Implement WebSockets in AngularJS? 
Use $websocket Service​
 var ws = $websocket('wss://example.com/socket'); 
ws.onMessage(function(event) { 
    console.log(event.data); 
}); 

1.​  
2.​ Use socket.io for real-time communication. 

 

84. How to Improve Routing Performance in AngularJS? 
Use resolve property to preload data before rendering a route.​
 $routeProvider.when('/dashboard', { 
    templateUrl: 'dashboard.html', 
    resolve: { 
        data: function(DataService) { 
            return DataService.getData(); 
        } 
    } 
}); 

●​  

 

85. How to Secure AngularJS API Calls? 

●​ Always use HTTPS. 



 

●​ Implement token-based authentication. 
●​ Use CSRF protection (XSRF-TOKEN). 

 

86. What is $templateCache in AngularJS? 
Stores templates in memory to reduce HTTP requests.​
 $templateCache.put('template.html', '<div>Hello</div>'); 

●​  

 

87. How to Minimize Digest Cycle Execution Time? 
Use $applyAsync() instead of $apply().​
 $scope.$applyAsync(function() { 
    $scope.data = newData; 
}); 

●​  

 

88. How to Prevent Memory Leaks in AngularJS? 

●​ Use $destroy event to clean up resources. 
●​ Unbind event listeners. 

 

89. How to Integrate AngularJS with React? 

●​ Use AngularJS directives to wrap React components. 

 

90. How to Enable Debugging Mode in AngularJS? 

●​ Use angular.reloadWithDebugInfo(). 

Here are questions 91-100 with detailed answers on advanced AngularJS topics, 
including testing, infinite scrolling, scope management, drag-and-drop, and state 
management. 🚀 

 

91. Using $httpBackend for Mocking API Calls in Tests 



 

In unit testing, $httpBackend allows you to mock HTTP requests instead of making real 
API calls. 

Example: Mocking an API Response 
describe('DataService Test', function() { 
    var $httpBackend, DataService; 
 
    beforeEach(module('myApp')); 
    beforeEach(inject(function(_$httpBackend_, _DataService_) { 
        $httpBackend = _$httpBackend_; 
        DataService = _DataService_; 
    })); 
 
    it('should return mocked data', function() { 
        var mockResponse = { name: 'John Doe' }; 
 
        $httpBackend.whenGET('/api/user').respond(mockResponse); 
         
        DataService.getUser().then(function(response) { 
            expect(response.data).toEqual(mockResponse); 
        }); 
 
        $httpBackend.flush(); // Triggers the response 
    }); 
 
    afterEach(function() { 
        $httpBackend.verifyNoOutstandingExpectation(); 
        $httpBackend.verifyNoOutstandingRequest(); 
    }); 
}); 
 

✅ $httpBackend.flush() ensures all mocked requests are processed.​
 ✅ Helps in unit testing without actual API calls. 

 

92. Implementing Infinite Scrolling in AngularJS 
Infinite scrolling loads more data as the user scrolls down. 

Example: Using ngInfiniteScroll 
Install ngInfiniteScroll​
 npm install ng-infinite-scroll 

1.​  



 

Add it to your module​
 angular.module('myApp', ['infinite-scroll']); 

2.​  

Use it in the template​
 <div ng-repeat="item in items" infinite-scroll="loadMore()"> 
    {{ item.name }} 
</div> 

3.​  

Define loadMore() in Controller​
 $scope.items = [...]; // Initial data 
$scope.loadMore = function() { 
    DataService.getMoreItems().then(function(newItems) { 
        $scope.items = $scope.items.concat(newItems); 
    }); 
}; 

4.​  

✅ Ensures a smooth user experience without reloading the page. 

 

93. Differences Between $timeout, $interval, and 
$digest 

Feature $timeout $interval $digest 

Purpos
e 

Executes a function 
after a delay 

Executes repeatedly at 
a fixed interval 

Manually triggers the 
digest cycle 

Use 
Case 

Delayed execution (like 
setTimeout) 

Periodic execution (like 
setInterval) 

When Angular does not 
detect changes 

Exampl
e 

$timeout(fn, 
2000); 

$interval(fn, 
1000); 

$scope.$digest(); 

Example Usage 
$timeout(function() { 
    console.log("Executed after 2 seconds"); 
}, 2000); 
 
var interval = $interval(function() { 
    console.log("Repeats every 1 second"); 



 

}, 1000); 
 
$scope.$watch('variable', function(newValue) { 
    console.log("Manually triggered digest cycle"); 
    $scope.$digest(); 
}); 
 

✅ $timeout and $interval schedule execution, while $digest forces updates. 

 

94. How to Avoid Scope Pollution in Large 
Applications? 

Scope pollution happens when too many variables are stored in $scope, causing 
memory leaks. 

Best Practices to Prevent Scope Pollution 
Use controllerAs syntax instead of $scope​
​
 app.controller('MainController', function() { 
    var vm = this; 
    vm.title = "Hello, World!"; 
}); 
 <h1>{{ ctrl.title }}</h1> 

1.​  

Use Services for Shared Data​
​
 app.service('UserService', function() { 
    this.user = { name: "John Doe" }; 
}); 
 
app.controller('UserCtrl', function(UserService) { 
    this.user = UserService.user; 
}); 

2.​  

Destroy $scope when Controller Unloads​
​
 $scope.$on('$destroy', function() { 
    $scope.variable = null; 
}); 



 

3.​  

✅ These practices improve performance and reduce memory leaks. 

 

95. Implementing Drag-and-Drop Features in AngularJS 

You can use ngDragDrop or HTML5's native Drag-and-Drop API. 

Example: Using ngDragDrop 
Install the module​
 npm install angular-dragdrop 

1.​  

Include it in the app​
 angular.module('myApp', ['ngDragDrop']); 

2.​  

Create Drag and Drop Areas​
 <div ng-drag="true" ng-model="item">Drag Me</div> 
<div ng-drop="true" ng-model="droppedItem">Drop Here</div> 

3.​  

✅ Provides an easy drag-and-drop experience with minimal setup. 

 

96. Using Redux-Like State Management in AngularJS 
AngularJS doesn’t have built-in state management, but you can use Redux-like patterns. 

Example: Using angular-redux 
Install Redux for AngularJS​
 npm install @angular-redux/store 

1.​  

Create a Store​
 app.factory('store', function() { 
    var state = { count: 0 }; 
    return { 
        getState: function() { return state; }, 
        dispatch: function(action) { 



 

            if (action.type === 'INCREMENT') { 
                state.count++; 
            } 
        } 
    }; 
}); 

2.​  

Use Store in a Controller​
 app.controller('CounterCtrl', function($scope, store) { 
    $scope.count = store.getState().count; 
    $scope.increment = function() { 
        store.dispatch({ type: 'INCREMENT' }); 
        $scope.count = store.getState().count; 
    }; 
}); 

3.​  

Use in HTML​
 <button ng-click="increment()">Increment</button> 
<p>Count: {{ count }}</p> 

4.​  

✅ Manages state globally like Redux in React. 

 

97-100. Other Advanced Topics 

97. How to Handle Large Data Sets Efficiently in AngularJS? 

●​ Use pagination instead of loading everything at once. 
●​ Optimize $watch and use track by in ng-repeat. 

98. What is the Best Way to Handle User Authentication in AngularJS? 

●​ Use JWT (JSON Web Tokens) and store tokens securely in HttpOnly cookies. 

99. How to Optimize AngularJS for Mobile Performance? 

●​ Avoid heavy DOM manipulations. 
●​ Use CSS animations instead of JavaScript. 

100. How to Integrate AngularJS with Modern Frameworks? 



 

●​ Use ngUpgrade for migrating to Angular. 
●​ Wrap AngularJS components inside React/Angular Elements. 
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