

1. What is Java?

○ Java is an object-oriented, platform-independent, high-level programming
language.

2. Why is Java platform-independent?

○ Java programs run on the JVM (Java Virtual Machine), making them
platform-independent.

3. What are JDK, JRE, and JVM?

○ JDK (Java Development Kit) → Includes compiler, JRE, and development
tools.

○ JRE (Java Runtime Environment) → Provides libraries and JVM to run Java
programs.

○ JVM (Java Virtual Machine) → Executes Java bytecode.
4. Difference between JDK 8 and JDK 11?

○ JDK 8 introduced Lambdas, Streams, Optional, and Default Methods.
○ JDK 11 removed Java EE modules and introduced var in lambda

expressions.
5. Explain Java memory management.

○ Java has Heap and Stack memory. Objects are stored in Heap, method

calls in Stack.
○ Garbage Collection removes unreferenced objects automatically.

6. What are Wrapper Classes in Java?

○ They convert primitive data types to objects (Integer, Double, Character,
etc.).

7. What is Autoboxing and Unboxing?

○ Autoboxing: Converting primitive to object (int → Integer).
○ Unboxing: Converting object to primitive (Integer → int).

8. What is the difference between equals() and ==?

○ == checks reference equality, while .equals() checks content equality.
9. What is the difference between String, StringBuffer, and StringBuilder?

○ String is immutable.
○ StringBuffer is mutable and thread-safe.
○ StringBuilder is mutable but not thread-safe.

10. Explain the final, finally, and finalize keywords.

● final → Prevents modification (class, method, variable).
● finally → Used in try-catch for cleanup.
● finalize() → Called by garbage collector before object destruction.

11. What is a static variable?
● A variable shared by all objects of a class.
12. What is a static method?
● A method that belongs to the class rather than an instance.
13. What is method overloading?
● Defining multiple methods with the same name but different parameters.
14. What is method overriding?
● Redefining a parent class method in a child class.
15. What are access modifiers in Java?
● private, default, protected, public.
16. What is an abstract class?
● A class that cannot be instantiated and may have abstract methods.
17. What is an interface in Java?
● A collection of abstract methods (Java 8+ allows default and static methods).
18. What is multiple inheritance in Java?
● Java does not support multiple inheritance in classes but supports it via interfaces.
19. What is the super keyword?
● Used to refer to the parent class.
20. What is the this keyword?
● Used to refer to the current instance of a class.

OOP Concepts (21-30)

21. What are the four pillars of OOP?
● Encapsulation, Inheritance, Polymorphism, Abstraction.
22. What is Encapsulation?
● Wrapping data and methods together in a class.
23. What is Inheritance?
● A child class acquires properties from a parent class.
24. What is Polymorphism?
● The ability of an object to take multiple forms (method overloading & overriding).
25. What is an Interface vs. Abstract Class?
● Abstract class can have constructors and state, an interface cannot.
26. What is Cohesion in Java?
● The degree to which a class is focused on a single concern.
27. What is Coupling?
● The dependency between classes.
28. What is the instanceof operator?
● Checks if an object is an instance of a specific class.
29. What are marker interfaces?
● Interfaces with no methods, e.g., Serializable, Cloneable.
30. What is the Object class?
● The root class for all Java classes.

Core Java Coding Questions (1-10)

31. How to swap two numbers without using a third variable?
public class SwapNumbers {
 public static void main(String[] args) {
 int a = 10, b = 20;
 a = a + b;
 b = a - b;
 a = a - b;
 System.out.println("a: " + a + ", b: " + b);
 }
}

32. Check if a number is prime
public class PrimeCheck {
 public static boolean isPrime(int num) {
 if (num <= 1) return false;
 for (int i = 2; i <= Math.sqrt(num); i++) {
 if (num % i == 0) return false;
 }
 return true;
 }
 public static void main(String[] args) {
 System.out.println(isPrime(17)); // true
 }
}

33. Find the factorial of a number
public class Factorial {
 public static int factorial(int n) {
 return (n == 0) ? 1 : n * factorial(n - 1);
 }
 public static void main(String[] args) {
 System.out.println(factorial(5)); // 120
 }
}

34. Reverse a string without using reverse()
public class ReverseString {
 public static String reverse(String str) {
 StringBuilder sb = new StringBuilder();

 for (int i = str.length() - 1; i >= 0; i--) {
 sb.append(str.charAt(i));
 }
 return sb.toString();
 }
 public static void main(String[] args) {
 System.out.println(reverse("hello")); // "olleh"
 }
}

35. Check if a number is palindrome
public class PalindromeNumber {
 public static boolean isPalindrome(int num) {
 int rev = 0, temp = num;
 while (num > 0) {
 rev = rev * 10 + num % 10;
 num /= 10;
 }
 return temp == rev;
 }
 public static void main(String[] args) {
 System.out.println(isPalindrome(121)); // true
 }
}

OOP & Inheritance (11-15)

36. Demonstrate method overloading
class MathOperations {
 int add(int a, int b) {
 return a + b;
 }
 double add(double a, double b) {
 return a + b;
 }
}
public class OverloadingExample {
 public static void main(String[] args) {
 MathOperations obj = new MathOperations();
 System.out.println(obj.add(5, 10));
 System.out.println(obj.add(5.5, 2.5));
 }
}

37. Demonstrate method overriding
class Parent {
 void show() {
 System.out.println("Parent method");
 }
}
class Child extends Parent {
 @Override
 void show() {
 System.out.println("Child method");
 }
}
public class OverridingExample {
 public static void main(String[] args) {
 Parent obj = new Child();
 obj.show(); // "Child method"
 }
}

Java Collections (16-20)

38. Reverse a list using Collections API
import java.util.*;

public class ReverseList {
 public static void main(String[] args) {
 List<Integer> list = Arrays.asList(1, 2, 3, 4, 5);
 Collections.reverse(list);
 System.out.println(list);
 }
}

39. Find the first non-repeating character in a string
import java.util.*;

public class FirstUniqueChar {
 public static char firstNonRepeating(String s) {
 Map<Character, Integer> map = new LinkedHashMap<>();
 for (char c : s.toCharArray()) {
 map.put(c, map.getOrDefault(c, 0) + 1);
 }
 for (Map.Entry<Character, Integer> entry : map.entrySet()) {

 if (entry.getValue() == 1) return entry.getKey();
 }
 return '_';
 }
 public static void main(String[] args) {
 System.out.println(firstNonRepeating("swiss")); // 'w'
 }
}

40. Find duplicates in an array using HashSet
import java.util.*;

public class FindDuplicates {
 public static void findDuplicates(int[] arr) {
 Set<Integer> seen = new HashSet<>();
 for (int num : arr) {
 if (!seen.add(num)) System.out.println("Duplicate: " + num);
 }
 }
 public static void main(String[] args) {
 int[] arr = {1, 2, 3, 4, 2, 5, 6, 3};
 findDuplicates(arr);
 }
}

Multithreading & Concurrency (21-25)

41. Create a thread using Runnable
class MyThread implements Runnable {
 public void run() {
 System.out.println("Thread is running...");
 }
}
public class ThreadExample {
 public static void main(String[] args) {
 Thread t = new Thread(new MyThread());
 t.start();
 }
}

42. Use synchronized block to prevent race conditions
class Counter {

 private int count = 0;
 public void increment() {
 synchronized (this) {
 count++;
 }
 }
 public int getCount() {
 return count;
 }
}
public class SynchronizedExample {
 public static void main(String[] args) {
 Counter counter = new Counter();
 Thread t1 = new Thread(() -> { for (int i = 0; i < 1000; i++) counter.increment(); });
 Thread t2 = new Thread(() -> { for (int i = 0; i < 1000; i++) counter.increment(); });
 t1.start();
 t2.start();
 try {
 t1.join();
 t2.join();
 } catch (InterruptedException e) {}
 System.out.println("Final Count: " + counter.getCount());
 }
}

Advanced Java (26-30)

43. Implement Singleton Design Pattern
class Singleton {
 private static Singleton instance;
 private Singleton() {}
 public static Singleton getInstance() {
 if (instance == null) {
 synchronized (Singleton.class) {
 if (instance == null) instance = new Singleton();
 }
 }
 return instance;
 }
}

44. Use Java 8 Streams to filter a list
import java.util.*;
import java.util.stream.Collectors;

public class StreamExample {
 public static void main(String[] args) {
 List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
 List<Integer> evens = numbers.stream().filter(n -> n % 2 ==
0).collect(Collectors.toList());
 System.out.println(evens);
 }
}

45. Use CompletableFuture for asynchronous programming
import java.util.concurrent.*;

public class AsyncExample {
 public static void main(String[] args) {
 CompletableFuture.supplyAsync(() -> "Hello")
 .thenApply(str -> str + " World")
 .thenAccept(System.out::println);
 }
}

Multithreading & Concurrency (51-70)

46. What is Multithreading?

● Running multiple threads concurrently.
● Example: Video streaming + chat in an app.

47. How to Create a Thread?

1. Extending Thread Class

class MyThread extends Thread {
 public void run() { System.out.println("Thread running"); }
}

2. Implementing Runnable Interface

class MyRunnable implements Runnable {

 public void run() { System.out.println("Thread running"); }
}

48. Runnable vs. Thread?

Feature Thread Class Runnable Interface

Inheritance ❌ Not flexible ✅ Can extend other classes

Implementation Thread.star
t()

new
Thread(runnable).start
()

49. What are volatile variables?

● Ensures a variable’s value is always read from main memory.

Example:
volatile int count = 0;

50. What is a Deadlock?

● Two threads waiting for each other, leading to infinite blocking.

51. wait() vs. sleep()

Feature wait() sleep()

Release
Lock

✅ Yes ❌ No

Used In Multithreading Delays execution

Advanced Java (71-100)

52.What is Reflection in Java?

● Allows runtime access to class methods and fields.

Example:
Class<?> cls = Class.forName("java.lang.String");

53. How to Prevent Cloning in Singleton?
@Override
protected Object clone() throws CloneNotSupportedException {
 throw new CloneNotSupportedException();
}

54. What is Java 8 Stream API?

● A functional programming feature for data processing.

Example:
List<Integer> list = Arrays.asList(1, 2, 3);
list.stream().filter(n -> n % 2 == 0).forEach(System.out::println);

Here are Java Multithreading (55-70) and Advanced Java (71-100) questions with
answers 🚀

Multithreading & Concurrency (55-70)

55. What is Synchronization in Java?

● Ensures that only one thread can access a critical section at a time.
● Used to prevent race conditions.

Example:
class Counter {
 private int count = 0;

 public synchronized void increment() {
 count++;
 }

 public int getCount() {
 return count;
 }
}

56. What are volatile variables?

● A volatile variable ensures that threads always read its latest value from main
memory.

Example:
class SharedResource {
 volatile int counter = 0;
}

57. What is a Deadlock?

● Occurs when two threads wait for each other to release locks, leading to an
infinite wait.

Example:
class DeadlockExample {
 static final Object LOCK1 = new Object();
 static final Object LOCK2 = new Object();

 public static void main(String[] args) {
 Thread t1 = new Thread(() -> {
 synchronized (LOCK1) {
 synchronized (LOCK2) {
 System.out.println("Thread 1");
 }
 }
 });

 Thread t2 = new Thread(() -> {
 synchronized (LOCK2) {
 synchronized (LOCK1) {
 System.out.println("Thread 2");
 }
 }
 });

 t1.start();
 t2.start();
 }
}

58. Difference between wait() and sleep()?

Feature wait() sleep()

Lock
Release

✅ Yes ❌ No

Used In Synchronization Delays execution

59. What is a ReentrantLock?

● A lock that allows a thread to acquire the same lock multiple times.

Example:
import java.util.concurrent.locks.ReentrantLock;

class ReentrantLockExample {
 private final ReentrantLock lock = new ReentrantLock();

 public void process() {
 lock.lock();
 try {
 System.out.println("Thread working...");
 } finally {
 lock.unlock();
 }
 }
}

60. What is ExecutorService?

● Manages a pool of threads for concurrent tasks.

Example:
import java.util.concurrent.*;

public class ExecutorExample {
 public static void main(String[] args) {
 ExecutorService executor = Executors.newFixedThreadPool(2);
 executor.submit(() -> System.out.println("Task executed"));
 executor.shutdown();
 }
}

61. Difference between Callable and Runnable?

Feature Runnable Callable

Return Type void Future<
V>

Exception Handling ❌ No ✅ Yes

Example (Callable):
Callable<Integer> task = () -> 10;

62. What is Fork/Join Framework?

● Used for parallel execution of recursive tasks.

Example:
import java.util.concurrent.*;

class ForkJoinTaskExample extends RecursiveTask<Integer> {
 int n;
 ForkJoinTaskExample(int n) { this.n = n; }

 protected Integer compute() {
 if (n <= 1) return n;
 ForkJoinTaskExample t1 = new ForkJoinTaskExample(n - 1);
 t1.fork();
 return n + t1.join();
 }
}

63. What are Atomic Variables?

● Provides thread-safe operations without synchronization.

Example:
import java.util.concurrent.atomic.AtomicInteger;

AtomicInteger atomicCount = new AtomicInteger(0);
atomicCount.incrementAndGet();

64. What is ThreadLocal?

● Each thread has its own copy of a variable.

Example:
ThreadLocal<Integer> threadLocal = ThreadLocal.withInitial(() -> 1);

65. What is a CyclicBarrier?

● Allows multiple threads to wait until all reach a common point.

Example:
import java.util.concurrent.*;

CyclicBarrier barrier = new CyclicBarrier(3, () -> System.out.println("Barrier Reached"));

66. What is a CountDownLatch?

● Waits until all threads complete before proceeding.

Example:
CountDownLatch latch = new CountDownLatch(3);

67. How does Thread Pool work?

● Reuses threads instead of creating new ones for every task.

68. What is a Future in Java?

● Represents the result of an asynchronous computation.

69. What is a Semaphore?

● Controls access to a shared resource with permits.

Example:
Semaphore semaphore = new Semaphore(2);
semaphore.acquire();
semaphore.release();

70. What is CompletableFuture?

● A more advanced version of Future with chaining.

Example:
CompletableFuture.supplyAsync(() -> "Hello").thenApply(str -> str + "
World").thenAccept(System.out::println);

Advanced Java (71-100)

71. What is Reflection in Java?

● Allows runtime access to classes, methods, and fields.

Example:
Class<?> cls = Class.forName("java.lang.String");

72. What is Serialization?

● Converts an object into a byte stream.

Example:
class Student implements Serializable {}

73. What is a Singleton Class?

● Ensures only one instance of a class.

74. How to prevent cloning in Singleton?
@Override
protected Object clone() throws CloneNotSupportedException {
 throw new CloneNotSupportedException();
}

75. What is Java 8 Stream API?

List<Integer> list = Arrays.asList(1, 2, 3);
list.stream().filter(n -> n % 2 == 0).forEach(System.out::println);

76. What is the Optional Class?

● Avoids NullPointerException.

Example:
Optional<String> str = Optional.ofNullable(null);

77. What is a Lambda Expression?
Runnable r = () -> System.out.println("Lambda");

78. What are Default Methods in Interfaces?
interface Test {
 default void show() { System.out.println("Default Method"); }
}

79. What is a Functional Interface?

● An interface with only one abstract method.

Example:
@FunctionalInterface
interface MyFunction { void execute(); }

80. What is the Java 9 Module System?

● Helps in modularizing Java applications.

Here’s a detailed explanation of Microservices, Spring Framework, JDBC, Design
Patterns, Java Memory Management, and JVM Internals (81-100) 🚀

81-85: Microservices in Java

81. What is Microservices Architecture?

● Microservices is an architecture where applications are broken into smaller,
independent services.

● Each service is loosely coupled, independently deployable, and communicates
using REST or messaging.

Example of Microservices Components:

● API Gateway (Spring Cloud Gateway)
● Service Discovery (Eureka)
● Inter-Service Communication (REST, Kafka)

82. How do Microservices communicate?

● REST APIs (HTTP requests between services)
● Message Brokers (Kafka, RabbitMQ)
● Service Discovery (Eureka, Consul)
● gRPC (efficient binary communication)

83. What is Spring Boot in Microservices?

● Spring Boot simplifies Microservices development by providing built-in
configurations for web servers, logging, security, and monitoring.

Example of a Simple Spring Boot Application:
@SpringBootApplication
public class MicroserviceApp {
 public static void main(String[] args) {
 SpringApplication.run(MicroserviceApp.class, args);
 }
}

84. What is API Gateway in Microservices?

● A central entry point for managing authentication, routing, load balancing.
● Example: Spring Cloud Gateway, Netflix Zuul

85. What is Circuit Breaker in Microservices?

● Prevents failures in one service from cascading into others.

● Example: Resilience4j, Hystrix

86-90: Spring Framework

86. What is Spring Framework?

● A Java framework for dependency injection, transaction management, and web
development.

87. What is Dependency Injection (DI)?

● Spring injects dependencies automatically, instead of creating objects manually.

Example:
@Component
class Engine {}

@Component
class Car {
 private final Engine engine;
 @Autowired
 public Car(Engine engine) {
 this.engine = engine;
 }
}

88. What is Spring Boot?

● Spring Boot simplifies Spring application development by eliminating XML
configuration and providing embedded servers (Tomcat, Jetty).

89. What is @RestController in Spring?

● Combines @Controller and @ResponseBody to handle RESTful APIs.

Example:
@RestController
@RequestMapping("/users")
public class UserController {

 @GetMapping("/{id}")
 public String getUser(@PathVariable int id) {
 return "User " + id;
 }
}

90. What is Spring Security?

● Handles authentication and authorization in Spring applications.

Example: Enable Security
@EnableWebSecurity
public class SecurityConfig extends WebSecurityConfigurerAdapter {
 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http.authorizeRequests().anyRequest().authenticated().and().formLogin();
 }
}

91-95: JDBC (Java Database Connectivity)

91. What is JDBC?

● JDBC (Java Database Connectivity) is an API for connecting Java applications
to databases.

92. JDBC vs. Hibernate?

Feature JDBC Hibernate

SQL Writing ✅ Required ❌ Uses HQL

Caching ❌ No ✅ Yes

ORM Support ❌ No ✅ Yes

93. Steps to Connect to Database using JDBC?

1. Load JDBC Driver
2. Establish Connection

3. Execute SQL Query
4. Process Results

Example:
Connection conn = DriverManager.getConnection("jdbc:mysql://localhost:3306/test", "root",
"password");
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("SELECT * FROM users");
while (rs.next()) {
 System.out.println(rs.getString("name"));
}

94. What is a Connection Pool?

● Reuses database connections to improve performance.
● Example: HikariCP, C3P0

95. What is Hibernate?

● A Java ORM framework that maps Java objects to database tables.

Example: Hibernate Entity
@Entity
class User {
 @Id
 private int id;
 private String name;
}

96-100: Design Patterns, Java Memory, and JVM
Internals

96. What are Design Patterns?

● Reusable solutions for common software problems.

Types of Design Patterns:

1. Creational (Factory, Singleton)
2. Structural (Adapter, Proxy)
3. Behavioral (Observer, Strategy)

97. What is the Factory Pattern?

● Encapsulates object creation logic in a method.

Example:
class ShapeFactory {
 public static Shape getShape(String type) {
 return type.equals("Circle") ? new Circle() : new Square();
 }
}

98. What is the Observer Pattern?

● Notifies multiple objects when a state changes.

Example:
class NewsAgency {
 private List<Observer> observers = new ArrayList<>();
 public void addObserver(Observer o) { observers.add(o); }
 public void notifyObservers() { for (Observer o : observers) o.update(); }
}

99. What is Java Memory Management?

● Java memory is divided into Heap (objects) and Stack (method calls).
● Garbage Collection automatically removes unused objects.

Java Memory Areas:

Area Purpose

Heap Stores Objects

Stack Stores Method Calls & Local Variables

Metaspac
e

Stores Class Metadata

100. What is JVM Internals?

● JVM (Java Virtual Machine) converts Java bytecode into machine code.
● JIT (Just-In-Time) Compiler optimizes performance.

JVM Components:

Component Purpose

Class Loader Loads Java classes

Garbage Collector Frees memory

JIT Compiler Optimizes execution

	OOP Concepts (21-30)
	Core Java Coding Questions (1-10)
	31. How to swap two numbers without using a third variable?
	32. Check if a number is prime
	33. Find the factorial of a number
	34. Reverse a string without using reverse()
	35. Check if a number is palindrome

	OOP & Inheritance (11-15)
	36. Demonstrate method overloading
	37. Demonstrate method overriding

	Java Collections (16-20)
	38. Reverse a list using Collections API
	39. Find the first non-repeating character in a string
	40. Find duplicates in an array using HashSet

	Multithreading & Concurrency (21-25)
	41. Create a thread using Runnable
	42. Use synchronized block to prevent race conditions

	Advanced Java (26-30)
	43. Implement Singleton Design Pattern
	44. Use Java 8 Streams to filter a list
	45. Use CompletableFuture for asynchronous programming

	Multithreading & Concurrency (51-70)
	46. What is Multithreading?
	47. How to Create a Thread?
	48. Runnable vs. Thread?
	49. What are volatile variables?
	Example:

	50. What is a Deadlock?
	51. wait() vs. sleep()

	Advanced Java (71-100)
	52.What is Reflection in Java?
	Example:

	53. How to Prevent Cloning in Singleton?
	54. What is Java 8 Stream API?
	Example:

	Multithreading & Concurrency (55-70)
	55. What is Synchronization in Java?
	Example:

	56. What are volatile variables?
	Example:

	57. What is a Deadlock?
	Example:

	58. Difference between wait() and sleep()?
	59. What is a ReentrantLock?
	Example:

	60. What is ExecutorService?
	Example:

	61. Difference between Callable and Runnable?
	Example (Callable):

	62. What is Fork/Join Framework?
	Example:

	63. What are Atomic Variables?
	Example:

	64. What is ThreadLocal?
	Example:

	65. What is a CyclicBarrier?
	Example:

	66. What is a CountDownLatch?
	Example:

	67. How does Thread Pool work?
	68. What is a Future in Java?
	69. What is a Semaphore?
	Example:

	70. What is CompletableFuture?
	Example:

	Advanced Java (71-100)
	71. What is Reflection in Java?
	Example:

	72. What is Serialization?
	Example:

	73. What is a Singleton Class?
	74. How to prevent cloning in Singleton?
	75. What is Java 8 Stream API?
	76. What is the Optional Class?
	Example:

	77. What is a Lambda Expression?
	78. What are Default Methods in Interfaces?
	79. What is a Functional Interface?
	Example:

	80. What is the Java 9 Module System?

	81-85: Microservices in Java
	81. What is Microservices Architecture?
	Example of Microservices Components:

	82. How do Microservices communicate?
	83. What is Spring Boot in Microservices?
	Example of a Simple Spring Boot Application:

	84. What is API Gateway in Microservices?
	85. What is Circuit Breaker in Microservices?

	86-90: Spring Framework
	86. What is Spring Framework?
	87. What is Dependency Injection (DI)?
	Example:

	88. What is Spring Boot?
	89. What is @RestController in Spring?
	Example:

	90. What is Spring Security?
	Example: Enable Security

	91-95: JDBC (Java Database Connectivity)
	91. What is JDBC?
	92. JDBC vs. Hibernate?
	93. Steps to Connect to Database using JDBC?
	Example:

	94. What is a Connection Pool?
	95. What is Hibernate?
	Example: Hibernate Entity

	96-100: Design Patterns, Java Memory, and JVM Internals
	96. What are Design Patterns?
	Types of Design Patterns:

	97. What is the Factory Pattern?
	Example:

	98. What is the Observer Pattern?
	Example:

	99. What is Java Memory Management?
	Java Memory Areas:

	100. What is JVM Internals?
	JVM Components:

	

