

Basic Ruby Questions and Answers

1.​ What is Ruby?​

○​ Answer: Ruby is an open-source, dynamic, object-oriented programming
language designed for simplicity and productivity.​

2.​ Explain the Ruby syntax for printing "Hello, World!"​

○​ Answer: puts 'Hello, World!'​

3.​ What are variables in Ruby?​

○​ Answer: Variables are used to store data. Ruby has several types of
variables: local, global, instance, and class variables.​

4.​ What is the difference between puts and print in Ruby?​

○​ Answer: puts prints a string followed by a newline, while print prints a
string without a newline.​

5.​ What is an array in Ruby?​

○​ Answer: An array is an ordered collection of objects, which can hold multiple
elements of any type.​

6.​ How do you create a hash in Ruby?​

○​ Answer: hash = { 'key1' => 'value1', 'key2' => 'value2' }​

7.​ What are symbols in Ruby?​

○​ Answer: Symbols are lightweight, immutable identifiers used as keys in
hashes or as names for variables or methods.​

8.​ What is a block in Ruby?​

○​ Answer: A block is a chunk of code that can accept parameters and is
passed to methods for execution.​

9.​ What is a method in Ruby?​

○​ Answer: A method is a function defined within a class that can be called to
perform a task.​

10.​What is the difference between == and equal? in Ruby?​

●​ Answer: == checks for value equality, while equal? checks if two objects refer to
the same memory location.​

11.​How do you define a class in Ruby?​

Answer:​
​
 class MyClass
 def my_method
 # code
 end
end

●​
12.​What is an instance variable in Ruby?​

●​ Answer: An instance variable is a variable prefixed with @ that is accessible within an

object instance.​

13.​What is a constant in Ruby?​

●​ Answer: A constant is a variable whose value is not supposed to change after
initialization, denoted by all uppercase letters.​

14.​What is the self keyword in Ruby?​

●​ Answer: self refers to the current object or the context in which a method is being
executed.​

15.​What does nil represent in Ruby?​

●​ Answer: nil represents the absence of any object or value.​

16.​How do you handle exceptions in Ruby?​

Answer: Using begin, rescue, and ensure blocks:​
​
 begin
 # code that may raise an error
rescue StandardError => e
 # code to handle error
ensure
 # code that will always run
end

●​
17.​What are the different types of loops in Ruby?​

●​ Answer: Ruby supports while, until, for, and each loops.​

18.​What is a Range in Ruby?​

●​ Answer: A range is an interval that can represent a sequence of numbers,

characters, or other objects. Example: 1..5​

19.​What does the super keyword do in Ruby?​

●​ Answer: super calls a method of the same name in the parent class.​

20.​What are regular expressions in Ruby?​

●​ Answer: Regular expressions are used for pattern matching and text manipulation,
defined with /pattern/.​

21.​How do you concatenate strings in Ruby?​

Answer: Using + or <<:​
​
 "Hello" + " World"
"Hello" << " World"

●​
22.​What is the each method in Ruby?​

●​ Answer: each is used to iterate over an array or a hash.​

23.​What is ARGV in Ruby?​

●​ Answer: ARGV is an array that contains command-line arguments passed to the

Ruby script.​

24.​How do you check the class of an object in Ruby?​

Answer: Use the .class method:​
​
 "hello".class #=> String

●​

25.​What is the purpose of require and include in Ruby?​

●​ Answer: require is used to load external files, while include is used to mix
modules into classes.​

Intermediate Ruby Questions and Answers

1.​ What is method overloading in Ruby?​

○​ Answer: Ruby does not support method overloading. However, you can use
default parameters or variable-length arguments to simulate it.​

2.​ What are the differences between a class and a module in Ruby?​

○​ Answer: A class can be instantiated and inherits from other classes, while a
module cannot be instantiated and is used for mixins.​

3.​ What is the initialize method in Ruby?​

○​ Answer: The initialize method is the constructor method that is called
when a new object is instantiated.​

4.​ How do you define a class method in Ruby?​

Answer: Class methods are defined with self:​
​
 class MyClass
 def self.class_method
 # code
 end
end

○​
5.​ What are Proc and Lambda in Ruby?​

○​ Answer: Both are types of blocks, but a Proc is less strict in argument

checking, while a Lambda checks the number of arguments passed.​

6.​ Explain the yield keyword in Ruby.​

○​ Answer: yield is used inside a method to pass control from the method to a
block.​

7.​ What is the attr_accessor in Ruby?​

○​ Answer: attr_accessor is a shortcut for defining both getter and setter
methods for instance variables.​

8.​ What is the difference between Array#map and Array#each in Ruby?​

○​ Answer: map returns a new array with the results of the block, while each
returns the original array and is used for iteration.​

9.​ How do you handle default values for method parameters in Ruby?​

Answer: You can assign default values to parameters:​
​
 def greet(name = "Guest")
 puts "Hello, #{name}"
end

○​
10.​What is the to_s method in Ruby?​

●​ Answer: The to_s method is used to convert an object into a string representation.​

11.​What is the difference between Array#select and Array#find in Ruby?​

●​ Answer: select returns an array of all matching elements, while find returns only

the first matching element.​

12.​What is the purpose of freeze in Ruby?​

●​ Answer: freeze makes an object immutable, preventing any further modifications.​

13.​What is the difference between dup and clone in Ruby?​

●​ Answer: dup creates a shallow copy of an object, while clone creates a deep copy
and copies the object's frozen state.​

14.​What is a singleton method in Ruby?​

●​ Answer: A singleton method is a method that is defined for a specific object, not its
class.​

15.​What is the difference between instance_variable_set and
instance_variable_get in Ruby?​

●​ Answer: instance_variable_set sets the value of an instance variable, while
instance_variable_get retrieves it.​

16.​How do you handle multi-threading in Ruby?​

●​ Answer: You can use the Thread class to create and manage threads in Ruby.​

17.​Explain how garbage collection works in Ruby.​

●​ Answer: Ruby uses an automatic garbage collector to reclaim memory by removing
unused objects.​

18.​What is a Hash#merge in Ruby?​

●​ Answer: merge combines two hashes into one, overriding values with the same
keys.​

19.​What is the purpose of Enumerable module in Ruby?​

●​ Answer: The Enumerable module provides methods for collections like arrays and
hashes, including map, select, reduce, etc.​

20.​What does respond_to? do in Ruby?​

●​ Answer: It checks whether an object can respond to a specific method.​

21.​What are the differences between while and until loops in Ruby?​

●​ Answer: while loops run as long as the condition is true, whereas until loops run
until the condition is true.​

22.​What is a mixin in Ruby?​

●​ Answer: A mixin is a module that can be included in a class to add functionality.​

23.​What is the self object in an instance method?​

●​ Answer: In an instance method, self refers to the instance of the class the method
belongs to.​

24.​How do you create a thread in Ruby?​

Answer:​
​
 thread = Thread.new { puts "Hello from a thread!" }

thread.join

●​
25.​How does Ruby handle method visibility?​

●​ Answer: Ruby has three levels of method visibility: public, protected, and

private.​

Advanced Ruby Questions and Answers

1.​ What is metaprogramming in Ruby?​

○​ Answer: Metaprogramming is writing code that writes code, typically using
eval, define_method, and method_missing.​

2.​ What is method_missing in Ruby?​

○​ Answer: method_missing is a method called when an object receives a
message it cannot respond to.​

3.​ What are hooks in Ruby?​

○​ Answer: Hooks are methods that are called automatically by Ruby in certain
situations, such as initialize, method_missing, etc.​

4.​ What is the use of define_method in Ruby?​

○​ Answer: define_method dynamically defines a method at runtime.​

5.​ What is the difference between class_variable and instance_variable in
Ruby?​

○​ Answer: Class variables are shared among all instances of a class, while
instance variables belong to a specific object instance.​

6.​ What is ObjectSpace in Ruby?​

○​ Answer: ObjectSpace allows you to interact with and inspect all objects
currently in memory.​

7.​ What is the purpose of super with arguments in Ruby?​

○​ Answer: It passes arguments to the method in the parent class.​

8.​ What is a gem in Ruby?​

○​ Answer: A gem is a packaged Ruby library or application.​

9.​ What is refinements in Ruby?​

○​ Answer: Refinements allow you to modify core classes only within a specific
scope.​

10.​What is the difference between include and extend in Ruby?​

○​ Answer: include mixes a module into an instance's method space, while
extend mixes it into the class's method space.​

11.​How do you handle concurrency in Ruby?​

○​ Answer: Ruby supports concurrency with threads and libraries like Thread
and Mutex.​

12.​What are lazy enumerators in Ruby?​

○​ Answer: Lazy enumerators allow you to evaluate elements in an enumeration
only when needed.​

13.​What is the eigenclass in Ruby?​

○​ Answer: The eigenclass (or metaclass) is the class of a specific object where
singleton methods are stored.​

14.​Explain how to use require_relative in Ruby.​

○​ Answer: require_relative is used to load files relative to the current
file’s location.​

15.​What is the purpose of Enumerable#reduce?​

○​ Answer: reduce combines elements of a collection into a single value using
an accumulator.​

16.​What are alias_method and alias_method_chain in Ruby?​

○​ Answer: alias_method creates a copy of a method, while
alias_method_chain is a Rails-specific method for wrapping methods with

additional functionality.​

17.​What is Object#clone used for?​

○​ Answer: clone creates a shallow copy of an object.​

18.​How do you define a singleton class in Ruby?​

Answer: A singleton class is defined for a specific object by opening the class:​
​
 class << obj
 # singleton methods
end

○​
19.​What are unshift and shift in Ruby?​

○​ Answer: unshift adds elements to the beginning of an array, while shift

removes the first element.​

20.​Explain uninitialized constant error in Ruby.​

○​ Answer: It occurs when Ruby cannot find a constant or class that is
referenced.​

21.​What are the assert and refute methods used for in Ruby testing?​

○​ Answer: assert checks if a condition is true, while refute checks if a
condition is false.​

22.​What is a callback in Ruby?​

○​ Answer: Callbacks are methods that are automatically invoked at specific
points in a program, commonly used in Rails.​

23.​What is Time.now in Ruby?​

○​ Answer: Time.now returns the current system time.​

24.​What is ruby-debug?​

○​ Answer: ruby-debug is a debugger for Ruby that allows step-through
debugging.​

25.​What is the ActiveRecord pattern in Ruby on Rails?​

○​ Answer: ActiveRecord is a pattern used in Rails for database access,
representing records as objects and handling CRUD operations automatically.​

Technical Ruby Questions and Answers

1.​ How do you implement logging in Ruby?​

Answer: Use the Logger class to create and write logs:​
​
 require 'logger'
logger = Logger.new(STDOUT)
logger.info('Info message')

○​
2.​ Explain Ruby's memory management model.​

○​ Answer: Ruby uses a garbage collector for automatic memory management.​

3.​ What are Marshal and YAML used for in Ruby?​

○​ Answer: Marshal serializes Ruby objects, while YAML is used for storing

and reading data in human-readable formats.​

4.​ How can you optimize Ruby code for performance?​

○​ Answer: Use memoization, avoid unnecessary object creation, reduce
method calls, and leverage native extensions or C extensions for
computational-heavy tasks.​

5.​ What is the difference between hash and set in Ruby?​

○​ Answer: A hash stores key-value pairs, while a set stores unique elements
without keys.​

6.​ What is the use of db:migrate in Rails?​

○​ Answer: db:migrate is used to apply changes to the database schema.​

7.​ What is a singleton in Ruby?​

○​ Answer: A singleton is a design pattern that ensures a class has only one
instance and provides a global access point to that instance.​

8.​ How do you handle database transactions in Ruby?​

○​ Answer: Use ActiveRecord::Base.transaction to handle database
transactions.​

9.​ What is the Rails console?​

○​ Answer: The Rails console is an interactive environment for running Ruby
code in the context of a Rails application.​

10.​How do you prevent SQL injection in Ruby on Rails?​

○​ Answer: Use ActiveRecord queries and parameterized queries to prevent
SQL injection.​

11.​What are background jobs in Ruby on Rails?​

○​ Answer: Background jobs handle tasks that need to be performed
asynchronously, often using tools like Sidekiq or Resque.​

12.​What is Bundler in Ruby?​

○​ Answer: Bundler is a tool that manages Ruby gem dependencies for
projects.​

13.​Explain the purpose of RSpec in Ruby.​

○​ Answer: RSpec is a testing framework used for behavior-driven development
(BDD) in Ruby.​

14.​What is Capybara used for in Ruby?​

○​ Answer: Capybara is a tool for acceptance testing in Ruby, especially useful
for simulating user interaction with web pages.​

15.​What is ActionController::Base in Rails?​

○​ Answer: ActionController::Base is the parent class for all controllers in
Rails, providing methods for handling web requests.​

16.​What is the render method in Ruby on Rails?​

○​ Answer: The render method is used to generate views in Rails controllers.​

17.​What is the difference between locals and instance variables in Rails
views?​

○​ Answer: locals are passed from the controller to the view, while instance
variables are set in the controller and accessible in the view.​

18.​How can you secure sensitive data in Ruby on Rails?​

○​ Answer: Use dotenv or Rails credentials to manage environment variables,
and ensure database connections are encrypted.​

19.​What is the scope method in Rails?​

○​ Answer: The scope method defines a custom query that can be reused
within models.​

20.​What are concerns in Ruby on Rails?​

○​ Answer: Concerns are modules used to extract reusable code, typically
shared across models or controllers.​

21.​What is the purpose of rails new?​

○​ Answer: rails new generates a new Rails application, setting up the
directory structure, configuration, and initial files.​

22.​What is ActiveJob in Rails?​

○​ Answer: ActiveJob is an abstraction layer for background job processing in
Rails, supporting various job frameworks like Sidekiq and Resque.​

23.​How does Rails handle sessions and cookies?​

○​ Answer: Rails stores session data either in cookies (client-side) or in the
database (server-side) depending on the configuration.​

24.​How do you configure routes in Rails?​

○​ Answer: Routes are configured in config/routes.rb where you define
how requests map to controller actions.​

25.​What is the difference between get and post in Rails routing?​

○​ Answer: get handles requests that retrieve data, while post handles
requests that create or modify data.​

	Intermediate Ruby Questions and Answers
	Advanced Ruby Questions and Answers
	Technical Ruby Questions and Answers

