

Basic Ruby Questions and Answers

1. What is Ruby?

○ Answer: Ruby is an open-source, dynamic, object-oriented programming
language designed for simplicity and productivity.

2. Explain the Ruby syntax for printing "Hello, World!"

○ Answer: puts 'Hello, World!'

3. What are variables in Ruby?

○ Answer: Variables are used to store data. Ruby has several types of
variables: local, global, instance, and class variables.

4. What is the difference between puts and print in Ruby?

○ Answer: puts prints a string followed by a newline, while print prints a
string without a newline.

5. What is an array in Ruby?

○ Answer: An array is an ordered collection of objects, which can hold multiple
elements of any type.

6. How do you create a hash in Ruby?

○ Answer: hash = { 'key1' => 'value1', 'key2' => 'value2' }

7. What are symbols in Ruby?

○ Answer: Symbols are lightweight, immutable identifiers used as keys in
hashes or as names for variables or methods.

8. What is a block in Ruby?

○ Answer: A block is a chunk of code that can accept parameters and is
passed to methods for execution.

9. What is a method in Ruby?

○ Answer: A method is a function defined within a class that can be called to
perform a task.

10. What is the difference between == and equal? in Ruby?

● Answer: == checks for value equality, while equal? checks if two objects refer to
the same memory location.

11. How do you define a class in Ruby?

Answer:

 class MyClass
 def my_method
 # code
 end
end

●
12. What is an instance variable in Ruby?

● Answer: An instance variable is a variable prefixed with @ that is accessible within an

object instance.

13. What is a constant in Ruby?

● Answer: A constant is a variable whose value is not supposed to change after
initialization, denoted by all uppercase letters.

14. What is the self keyword in Ruby?

● Answer: self refers to the current object or the context in which a method is being
executed.

15. What does nil represent in Ruby?

● Answer: nil represents the absence of any object or value.

16. How do you handle exceptions in Ruby?

Answer: Using begin, rescue, and ensure blocks:

 begin
 # code that may raise an error
rescue StandardError => e
 # code to handle error
ensure
 # code that will always run
end

●
17. What are the different types of loops in Ruby?

● Answer: Ruby supports while, until, for, and each loops.

18. What is a Range in Ruby?

● Answer: A range is an interval that can represent a sequence of numbers,

characters, or other objects. Example: 1..5

19. What does the super keyword do in Ruby?

● Answer: super calls a method of the same name in the parent class.

20. What are regular expressions in Ruby?

● Answer: Regular expressions are used for pattern matching and text manipulation,
defined with /pattern/.

21. How do you concatenate strings in Ruby?

Answer: Using + or <<:

 "Hello" + " World"
"Hello" << " World"

●
22. What is the each method in Ruby?

● Answer: each is used to iterate over an array or a hash.

23. What is ARGV in Ruby?

● Answer: ARGV is an array that contains command-line arguments passed to the

Ruby script.

24. How do you check the class of an object in Ruby?

Answer: Use the .class method:

 "hello".class #=> String

●

25. What is the purpose of require and include in Ruby?

● Answer: require is used to load external files, while include is used to mix
modules into classes.

Intermediate Ruby Questions and Answers

1. What is method overloading in Ruby?

○ Answer: Ruby does not support method overloading. However, you can use
default parameters or variable-length arguments to simulate it.

2. What are the differences between a class and a module in Ruby?

○ Answer: A class can be instantiated and inherits from other classes, while a
module cannot be instantiated and is used for mixins.

3. What is the initialize method in Ruby?

○ Answer: The initialize method is the constructor method that is called
when a new object is instantiated.

4. How do you define a class method in Ruby?

Answer: Class methods are defined with self:

 class MyClass
 def self.class_method
 # code
 end
end

○
5. What are Proc and Lambda in Ruby?

○ Answer: Both are types of blocks, but a Proc is less strict in argument

checking, while a Lambda checks the number of arguments passed.

6. Explain the yield keyword in Ruby.

○ Answer: yield is used inside a method to pass control from the method to a
block.

7. What is the attr_accessor in Ruby?

○ Answer: attr_accessor is a shortcut for defining both getter and setter
methods for instance variables.

8. What is the difference between Array#map and Array#each in Ruby?

○ Answer: map returns a new array with the results of the block, while each
returns the original array and is used for iteration.

9. How do you handle default values for method parameters in Ruby?

Answer: You can assign default values to parameters:

 def greet(name = "Guest")
 puts "Hello, #{name}"
end

○
10. What is the to_s method in Ruby?

● Answer: The to_s method is used to convert an object into a string representation.

11. What is the difference between Array#select and Array#find in Ruby?

● Answer: select returns an array of all matching elements, while find returns only

the first matching element.

12. What is the purpose of freeze in Ruby?

● Answer: freeze makes an object immutable, preventing any further modifications.

13. What is the difference between dup and clone in Ruby?

● Answer: dup creates a shallow copy of an object, while clone creates a deep copy
and copies the object's frozen state.

14. What is a singleton method in Ruby?

● Answer: A singleton method is a method that is defined for a specific object, not its
class.

15. What is the difference between instance_variable_set and
instance_variable_get in Ruby?

● Answer: instance_variable_set sets the value of an instance variable, while
instance_variable_get retrieves it.

16. How do you handle multi-threading in Ruby?

● Answer: You can use the Thread class to create and manage threads in Ruby.

17. Explain how garbage collection works in Ruby.

● Answer: Ruby uses an automatic garbage collector to reclaim memory by removing
unused objects.

18. What is a Hash#merge in Ruby?

● Answer: merge combines two hashes into one, overriding values with the same
keys.

19. What is the purpose of Enumerable module in Ruby?

● Answer: The Enumerable module provides methods for collections like arrays and
hashes, including map, select, reduce, etc.

20. What does respond_to? do in Ruby?

● Answer: It checks whether an object can respond to a specific method.

21. What are the differences between while and until loops in Ruby?

● Answer: while loops run as long as the condition is true, whereas until loops run
until the condition is true.

22. What is a mixin in Ruby?

● Answer: A mixin is a module that can be included in a class to add functionality.

23. What is the self object in an instance method?

● Answer: In an instance method, self refers to the instance of the class the method
belongs to.

24. How do you create a thread in Ruby?

Answer:

 thread = Thread.new { puts "Hello from a thread!" }

thread.join

●
25. How does Ruby handle method visibility?

● Answer: Ruby has three levels of method visibility: public, protected, and

private.

Advanced Ruby Questions and Answers

1. What is metaprogramming in Ruby?

○ Answer: Metaprogramming is writing code that writes code, typically using
eval, define_method, and method_missing.

2. What is method_missing in Ruby?

○ Answer: method_missing is a method called when an object receives a
message it cannot respond to.

3. What are hooks in Ruby?

○ Answer: Hooks are methods that are called automatically by Ruby in certain
situations, such as initialize, method_missing, etc.

4. What is the use of define_method in Ruby?

○ Answer: define_method dynamically defines a method at runtime.

5. What is the difference between class_variable and instance_variable in
Ruby?

○ Answer: Class variables are shared among all instances of a class, while
instance variables belong to a specific object instance.

6. What is ObjectSpace in Ruby?

○ Answer: ObjectSpace allows you to interact with and inspect all objects
currently in memory.

7. What is the purpose of super with arguments in Ruby?

○ Answer: It passes arguments to the method in the parent class.

8. What is a gem in Ruby?

○ Answer: A gem is a packaged Ruby library or application.

9. What is refinements in Ruby?

○ Answer: Refinements allow you to modify core classes only within a specific
scope.

10. What is the difference between include and extend in Ruby?

○ Answer: include mixes a module into an instance's method space, while
extend mixes it into the class's method space.

11. How do you handle concurrency in Ruby?

○ Answer: Ruby supports concurrency with threads and libraries like Thread
and Mutex.

12. What are lazy enumerators in Ruby?

○ Answer: Lazy enumerators allow you to evaluate elements in an enumeration
only when needed.

13. What is the eigenclass in Ruby?

○ Answer: The eigenclass (or metaclass) is the class of a specific object where
singleton methods are stored.

14. Explain how to use require_relative in Ruby.

○ Answer: require_relative is used to load files relative to the current
file’s location.

15. What is the purpose of Enumerable#reduce?

○ Answer: reduce combines elements of a collection into a single value using
an accumulator.

16. What are alias_method and alias_method_chain in Ruby?

○ Answer: alias_method creates a copy of a method, while
alias_method_chain is a Rails-specific method for wrapping methods with

additional functionality.

17. What is Object#clone used for?

○ Answer: clone creates a shallow copy of an object.

18. How do you define a singleton class in Ruby?

Answer: A singleton class is defined for a specific object by opening the class:

 class << obj
 # singleton methods
end

○
19. What are unshift and shift in Ruby?

○ Answer: unshift adds elements to the beginning of an array, while shift

removes the first element.

20. Explain uninitialized constant error in Ruby.

○ Answer: It occurs when Ruby cannot find a constant or class that is
referenced.

21. What are the assert and refute methods used for in Ruby testing?

○ Answer: assert checks if a condition is true, while refute checks if a
condition is false.

22. What is a callback in Ruby?

○ Answer: Callbacks are methods that are automatically invoked at specific
points in a program, commonly used in Rails.

23. What is Time.now in Ruby?

○ Answer: Time.now returns the current system time.

24. What is ruby-debug?

○ Answer: ruby-debug is a debugger for Ruby that allows step-through
debugging.

25. What is the ActiveRecord pattern in Ruby on Rails?

○ Answer: ActiveRecord is a pattern used in Rails for database access,
representing records as objects and handling CRUD operations automatically.

Technical Ruby Questions and Answers

1. How do you implement logging in Ruby?

Answer: Use the Logger class to create and write logs:

 require 'logger'
logger = Logger.new(STDOUT)
logger.info('Info message')

○
2. Explain Ruby's memory management model.

○ Answer: Ruby uses a garbage collector for automatic memory management.

3. What are Marshal and YAML used for in Ruby?

○ Answer: Marshal serializes Ruby objects, while YAML is used for storing

and reading data in human-readable formats.

4. How can you optimize Ruby code for performance?

○ Answer: Use memoization, avoid unnecessary object creation, reduce
method calls, and leverage native extensions or C extensions for
computational-heavy tasks.

5. What is the difference between hash and set in Ruby?

○ Answer: A hash stores key-value pairs, while a set stores unique elements
without keys.

6. What is the use of db:migrate in Rails?

○ Answer: db:migrate is used to apply changes to the database schema.

7. What is a singleton in Ruby?

○ Answer: A singleton is a design pattern that ensures a class has only one
instance and provides a global access point to that instance.

8. How do you handle database transactions in Ruby?

○ Answer: Use ActiveRecord::Base.transaction to handle database
transactions.

9. What is the Rails console?

○ Answer: The Rails console is an interactive environment for running Ruby
code in the context of a Rails application.

10. How do you prevent SQL injection in Ruby on Rails?

○ Answer: Use ActiveRecord queries and parameterized queries to prevent
SQL injection.

11. What are background jobs in Ruby on Rails?

○ Answer: Background jobs handle tasks that need to be performed
asynchronously, often using tools like Sidekiq or Resque.

12. What is Bundler in Ruby?

○ Answer: Bundler is a tool that manages Ruby gem dependencies for
projects.

13. Explain the purpose of RSpec in Ruby.

○ Answer: RSpec is a testing framework used for behavior-driven development
(BDD) in Ruby.

14. What is Capybara used for in Ruby?

○ Answer: Capybara is a tool for acceptance testing in Ruby, especially useful
for simulating user interaction with web pages.

15. What is ActionController::Base in Rails?

○ Answer: ActionController::Base is the parent class for all controllers in
Rails, providing methods for handling web requests.

16. What is the render method in Ruby on Rails?

○ Answer: The render method is used to generate views in Rails controllers.

17. What is the difference between locals and instance variables in Rails
views?

○ Answer: locals are passed from the controller to the view, while instance
variables are set in the controller and accessible in the view.

18. How can you secure sensitive data in Ruby on Rails?

○ Answer: Use dotenv or Rails credentials to manage environment variables,
and ensure database connections are encrypted.

19. What is the scope method in Rails?

○ Answer: The scope method defines a custom query that can be reused
within models.

20. What are concerns in Ruby on Rails?

○ Answer: Concerns are modules used to extract reusable code, typically
shared across models or controllers.

21. What is the purpose of rails new?

○ Answer: rails new generates a new Rails application, setting up the
directory structure, configuration, and initial files.

22. What is ActiveJob in Rails?

○ Answer: ActiveJob is an abstraction layer for background job processing in
Rails, supporting various job frameworks like Sidekiq and Resque.

23. How does Rails handle sessions and cookies?

○ Answer: Rails stores session data either in cookies (client-side) or in the
database (server-side) depending on the configuration.

24. How do you configure routes in Rails?

○ Answer: Routes are configured in config/routes.rb where you define
how requests map to controller actions.

25. What is the difference between get and post in Rails routing?

○ Answer: get handles requests that retrieve data, while post handles
requests that create or modify data.

	Intermediate Ruby Questions and Answers
	Advanced Ruby Questions and Answers
	Technical Ruby Questions and Answers

