

MERN Stack

Basic Level (1-25)

1. What is the MERN stack?

●​ MERN stands for MongoDB, Express.js, React.js, and Node.js, a
full-stack JavaScript technology stack used for web development.​

2. What is MongoDB?

●​ MongoDB is a NoSQL database that stores data in JSON-like BSON
format for flexibility and scalability.​

3. What is Express.js?

●​ Express.js is a backend web framework for Node.js that simplifies
server-side development.​

4. What is React.js?

●​ React.js is a JavaScript library used for building user interfaces,
primarily for single-page applications (SPA).​

5. What is Node.js?

●​ Node.js is a JavaScript runtime environment that allows executing
JavaScript on the server-side.​

6. How does the MERN stack work together?

●​ MongoDB stores data → Express.js handles backend APIs →
React.js manages UI → Node.js executes backend logic.​

7. Why is the MERN stack popular?

●​ Uses JavaScript for both frontend & backend, has a strong
developer community, and offers high performance.​

8. What is the difference between SQL and NoSQL?

●​ SQL databases are structured (e.g., MySQL), while NoSQL databases
(e.g., MongoDB) store unstructured or semi-structured data.​

9. What is JSX in React?

●​ JSX allows writing HTML inside JavaScript, making UI development
more intuitive.​

10. What is a REST API?

●​ A REST API is an architectural style using HTTP methods (GET,
POST, PUT, DELETE) for data communication.​

11. How do you create a basic Express server?
javascript
CopyEdit
const express = require('express');
const app = express();
app.listen(3000, () => console.log('Server running on
port 3000'));

12. What is npm?

●​ npm (Node Package Manager) is a tool to manage JavaScript
packages and dependencies.​

13. What is useState in React?
A React Hook used to manage component-level state:​
​
 javascript​

CopyEdit​
const [count, setCount] = useState(0);

●​

14. What is a functional component in React?

●​ A simple JavaScript function that returns JSX and doesn’t have lifecycle
methods like class components.​

15. How do you install MongoDB?

●​ Download from MongoDB official website and run mongod to start the
server.​

16. What is middleware in Express.js?

●​ Middleware functions process requests before they reach the final
handler.​

17. What is useEffect in React?

●​ A React Hook for managing side effects like API calls or event
listeners.​

18. What is the difference between class and functional components?

●​ Class components use this.state, while functional components use
Hooks like useState.​

19. What is props in React?

●​ Props (short for properties) allow data to be passed from parent to
child components.​

20. What is the difference between React and React Native?

https://www.mongodb.com

●​ React is for web applications, while React Native is for mobile app
development.​

21. How do you define a schema in Mongoose?
javascript
CopyEdit
const mongoose = require('mongoose');
const UserSchema = new mongoose.Schema({ name: String,
email: String });
const User = mongoose.model('User', UserSchema);

22. What is CORS in Express.js?

●​ Cross-Origin Resource Sharing (CORS) allows requests from different
domains.​

23. How do you handle form submission in React?

●​ Using the onSubmit event and useState to manage form data.​

24. What is the difference between state and props in React?

●​ State is mutable (internal), while props are immutable (passed from
parent to child).​

25. How do you start a new React project?

●​ Run: npx create-react-app my-app​

Intermediate Level (26-50)

26. What is an arrow function in JavaScript?
javascript
CopyEdit
const sum = (a, b) => a + b;

27. What is the purpose of MongoDB indexes?

●​ Indexes improve query performance by optimizing searches.​

28. How do you fetch data in React using fetch API?
javascript
CopyEdit
useEffect(() => {
 fetch('https://api.example.com/data')
 .then(res => res.json())
 .then(data => setData(data));
}, []);

29. What is a higher-order component (HOC) in React?

●​ A function that takes a component and returns an enhanced
component.​

30. What is map() in JavaScript?

●​ An array method used to iterate and transform elements.​

31. How do you use Express Router to structure your backend?

●​ Express Router helps in modularizing routes for better code
management.​

javascript
CopyEdit
const express = require('express');
const router = express.Router();
router.get('/users', (req, res) => res.send('User
list'));
module.exports = router;

32. How do you handle errors in Express.js?

●​ Using an error-handling middleware:​

javascript
CopyEdit
app.use((err, req, res, next) => {
 res.status(500).json({ error: err.message });
});

33. What is the purpose of useRef in React?

●​ useRef creates a persistent mutable object without re-rendering the
component.​

javascript
CopyEdit
const inputRef = useRef();

34. What is useMemo in React, and why is it used?

●​ useMemo caches computations to optimize performance.​

javascript
CopyEdit
const memoizedValue = useMemo(() =>
computeExpensiveValue(data), [data]);

35. What is Redux, and why is it used in React?

●​ Redux is a state management library that provides a centralized
store for managing app-wide state.​

36. What are the main components of Redux?

●​ Store (holds state), Actions (define events), Reducers (modify state),
Dispatch (sends actions).​

37. How do you create a Redux store?
javascript
CopyEdit
import { createStore } from 'redux';
const store = createStore(reducer);

38. How do you update state in Redux?

●​ Using dispatch():​

javascript
CopyEdit
store.dispatch({ type: 'INCREMENT' });

39. What is useDispatch and useSelector in React-Redux?

●​ useDispatch() sends actions to Redux, useSelector() gets state
from the store.​

40. What is Context API in React, and how does it compare to Redux?

●​ Context API provides a way to pass data down the component tree
without props drilling. It is simpler than Redux but less powerful for
complex state management.​

41. What is a Promise in JavaScript?

●​ A Promise represents an asynchronous operation that may succeed
(resolve()) or fail (reject()).​

javascript
CopyEdit
let myPromise = new Promise((resolve, reject) => {
resolve("Success"); });

42. What is async/await in JavaScript?

●​ It is used to handle asynchronous code in a synchronous-like manner.​

javascript
CopyEdit
async function fetchData() {
 let response = await
fetch('https://api.example.com/data');
 let data = await response.json();
 console.log(data);
}

43. How do you use JWT for authentication in MERN?

●​ Generate JWT token:​

javascript
CopyEdit
const jwt = require('jsonwebtoken');
const token = jwt.sign({ userId: user._id }, 'secretKey',
{ expiresIn: '1h' });

44. How do you verify a JWT token in Express.js?

●​ Middleware to protect routes:​

javascript
CopyEdit
app.use('/protected', (req, res, next) => {

 const token = req.headers['authorization'];
 jwt.verify(token, 'secretKey', (err, decoded) => {
 if (err) return res.status(401).send('Unauthorized');
 req.user = decoded;
 next();
 });
});

45. How do you create a protected route in React?

●​ Using React Router:​

javascript
CopyEdit
const PrivateRoute = ({ component: Component, ...rest })
=> {
 const isAuthenticated =
!!localStorage.getItem('token');
 return (
 <Route {...rest} render={(props) => (
 isAuthenticated ? <Component {...props} /> :
<Redirect to="/login" />
)} />
);
};

46. What is Axios, and why use it over fetch()?

●​ Axios is a Promise-based HTTP client with features like request
canceling and automatic JSON parsing.​

javascript
CopyEdit
axios.get('/api/data').then(response =>
console.log(response.data));

47. What is the difference between sessionStorage and
localStorage?

●​ sessionStorage stores data for the session, while localStorage
persists until manually cleared.​

48. How do you optimize MongoDB queries?

●​ Use indexes, limit fields returned, avoid unnecessary queries, and
use aggregation pipelines.​

49. What is Mongoose populate() method?

●​ It is used to fetch referenced documents in MongoDB.​

javascript
CopyEdit
User.find().populate('posts').exec((err, users) =>
console.log(users));

50. How do you set up Redux in a React project?

●​ Install dependencies:​

bash
CopyEdit
npm install redux react-redux

●​ Create a Redux store:​

javascript
CopyEdit
import { createStore } from 'redux';

const store = createStore(reducer);

●​ Wrap the app with <Provider>:​

javascript
CopyEdit
import { Provider } from 'react-redux';
<Provider store={store}>
 <App />
</Provider>

Advanced Level (51-75)

51. How do you manage authentication in MERN Stack?

●​ Using JWT (JSON Web Token) for user authentication.​

52. How does React Virtual DOM work?

●​ It updates only the changed parts of the UI
efficiently.​

53. What is lazy loading in React?

javascript
CopyEdit
const LazyComponent = React.lazy(() =>
import('./Component'));

54. What are WebSockets, and how are they used?

●​ WebSockets enable real-time communication between the
server and client.

55. What is server-side rendering (SSR) in React?

●​ SSR renders React components on the server instead of
the browser, improving performance and SEO.​

56. How do you implement SSR in React with Next.js?

●​ Using getServerSideProps() in Next.js:​

export async function getServerSideProps() {
 const res = await
fetch('https://api.example.com/data');
 const data = await res.json();
 return { props: { data } };
}

●​ This fetches data before rendering the page.​

57. What is code splitting in React?

●​ It loads JavaScript code only when needed, improving
performance.​

const LazyComponent = React.lazy(() =>
import('./Component'));

58. How does React Suspense work?

●​ It handles lazy loading components and displays a
fallback UI while loading.​

<Suspense fallback={<div>Loading...</div>}>

 <LazyComponent />
</Suspense>

59. What are React Portals?

●​ Portals render components outside their parent DOM
hierarchy, useful for modals.​

ReactDOM.createPortal(<Modal />,
document.getElementById('modal-root'));

60. How do you optimize React performance?

●​ Use React.memo(), useCallback(), useMemo(), lazy
loading, and optimize re-renders.​

61. What is GraphQL, and how does it compare to REST
APIs?

●​ GraphQL allows fetching only required data with a
single query, unlike REST.​

62. How do you implement GraphQL in a MERN stack app?

●​ Install GraphQL dependencies:​

npm install express-graphql graphql

●​ Define a schema:​

const { GraphQLObjectType, GraphQLSchema, GraphQLString }
= require('graphql');
const RootQuery = new GraphQLObjectType({
 name: 'RootQueryType',
 fields: { message: { type: GraphQLString, resolve() {
return "Hello World"; } } }
});
module.exports = new GraphQLSchema({ query: RootQuery });

63. What is WebSocket, and how is it used in a MERN app?

●​ WebSockets enable real-time communication using
bidirectional connections.​

const socket = new WebSocket('ws://localhost:5000');

64. What is MongoDB Aggregation?

●​ A framework for processing and transforming data in
MongoDB.​

db.users.aggregate([{ $group: { _id: "$role", count: {
$sum: 1 } } }]);

65. How do you handle transactions in MongoDB?

●​ Using the session object with transactions:​

const session = await mongoose.startSession();
session.startTransaction();
try {

 await User.updateOne({ _id: id }, { balance: newBalance
}, { session });
 await session.commitTransaction();
} catch (error) {
 await session.abortTransaction();
}

66. What is Redux Thunk, and why is it used?

●​ Redux Thunk handles async operations inside Redux
actions.​

export const fetchData = () => async (dispatch) => {
 const response = await fetch('/api/data');
 const data = await response.json();
 dispatch({ type: 'FETCH_SUCCESS', payload: data });
};

67. How does useReducer work in React?

●​ A React Hook alternative to Redux for managing state
with a reducer function.​

const reducer = (state, action) => action.type ===
"increment" ? state + 1 : state;
const [count, dispatch] = useReducer(reducer, 0);

68. How do you secure Express.js APIs?

●​ Use JWT authentication, input validation, CORS,
HTTPS, and rate limiting.​

69. How do you prevent SQL/NoSQL injection attacks?

●​ Sanitize inputs, use parameterized queries, and limit
database access.​

70. What are Microservices, and how can they be used in
MERN stack?

●​ Microservices split an app into small, independent
services communicating via APIs.​

●​ Example: Separate auth, payments, and user services
as independent apps.​

71. How do you implement role-based access control (RBAC)
in MERN?

●​ Middleware checks user roles before granting access.​

const authorize = (roles) => (req, res, next) => {
 if (!roles.includes(req.user.role)) return
res.status(403).send("Forbidden");
 next();
};

72. What is Docker, and how can you deploy a MERN stack
app using it?

●​ Docker containerizes the app for easy deployment.​

●​ Sample Dockerfile for Node.js backend:​

FROM node:14

WORKDIR /app
COPY package.json .
RUN npm install
COPY . .
CMD ["node", "server.js"]

73. How do you use PM2 to manage Node.js processes?

●​ Install PM2 and start the server:​

npm install -g pm2
pm2 start server.js

74. How do you integrate Redis with a MERN stack app?

●​ Install Redis and use it as a cache layer:​

const redis = require('redis');
const client = redis.createClient();
client.set("key", "value");

75. How do you implement OAuth authentication in MERN
stack?

●​ Use Google OAuth or Facebook Login with Passport.js.​

passport.use(new GoogleStrategy({ clientID, clientSecret,
callbackURL },
 (accessToken, refreshToken, profile, done) => {
 User.findOrCreate({ googleId: profile.id }, done);
 }

));

Here are 20 technical-level MERN Stack interview
questions and answers, continuing from 76 to 95.

Technical-Level (76-95)

76. How do you handle file uploads in a MERN app?

●​ Using multer in Express.js:​

const multer = require('multer');

const upload = multer({ dest: 'uploads/' });

app.post('/upload', upload.single('file'), (req, res) =>
res.send(req.file));

77. How do you implement pagination in MongoDB?

●​ Using .skip() and .limit():​

const page = 2;

const limit = 10;

const users = await User.find().skip((page - 1) *
limit).limit(limit);

78. How do you improve the performance of MongoDB
queries?

●​ Index fields, use projections, limit the number of
documents returned, and optimize aggregation
pipelines.​

79. How do you configure CORS in an Express.js app?

●​ Using cors middleware:​

const cors = require('cors');

app.use(cors({ origin: 'http://example.com' }));

80. How do you optimize React rendering performance?

●​ Use React.memo(), useCallback(), useMemo(),
shouldComponentUpdate(), and React Profiler.​

81. What is HOC (Higher-Order Component) in React?

●​ A function that takes a component and returns a new
component with added functionality.​

const withLogger = (Component) => (props) => {

 console.log("Rendered");

 return <Component {...props} />;

};

82. What is Debouncing in JavaScript, and how do you
implement it?

●​ Delays function execution until after a certain time
passes.​

function debounce(fn, delay) {

 let timer;

 return (...args) => {

 clearTimeout(timer);

 timer = setTimeout(() => fn(...args), delay);

 };

}

83. What is Throttling in JavaScript, and how does it
differ from Debouncing?

●​ Throttling limits function execution at a fixed
interval.​

function throttle(fn, limit) {

 let lastCall = 0;

 return (...args) => {

 const now = Date.now();

 if (now - lastCall >= limit) {

 lastCall = now;

 fn(...args);

 }

 };

}

84. How do you create a custom React Hook?

●​ Example: useFetch hook for fetching data.​

function useFetch(url) {

 const [data, setData] = useState(null);

 useEffect(() => {

 fetch(url).then(res => res.json()).then(setData);

 }, [url]);

 return data;

}

85. How do you configure environment variables in a MERN
stack app?

●​ Backend: Use .env file with dotenv:​

require('dotenv').config();

const PORT = process.env.PORT;

●​ Frontend: Store variables in .env with REACT_APP_
prefix.​

86. How do you implement WebSockets in MERN for real-time
updates?

●​ Use socket.io:​

const io = require('socket.io')(server);

io.on('connection', (socket) => {

 console.log('User connected');

 socket.emit('message', 'Hello from server');

});

87. How do you implement authentication middleware in
Express.js?

function authMiddleware(req, res, next) {

 const token = req.headers.authorization;

 if (!token) return
res.status(401).send('Unauthorized');

 jwt.verify(token, 'secretKey', (err, user) => {

 if (err) return res.status(403).send('Forbidden');

 req.user = user;

 next();

 });

}

88. How do you use React Context API for global state
management?

const MyContext = createContext();

function MyProvider({ children }) {

 const [state, setState] = useState("value");

 return <MyContext.Provider
value={state}>{children}</MyContext.Provider>;

}

89. How do you test a React component using Jest and
React Testing Library?

import { render, screen } from '@testing-library/react';

import MyComponent from './MyComponent';

test('renders component', () => {

 render(<MyComponent />);

 expect(screen.getByText(/hello/i)).toBeInTheDocument();

});

90. How do you test an Express.js API using Jest and
Supertest?

const request = require('supertest');

const app = require('../server');

test('GET /api/data', async () => {

 const res = await request(app).get('/api/data');

 expect(res.statusCode).toBe(200);

});

91. How do you secure MongoDB connections in production?

●​ Use environment variables for credentials, enable
authentication, whitelist IPs, and disable public
access.​

92. What are the differences between useState and
useReducer?

●​ useState is simpler for small state changes, while
useReducer is better for complex state logic with
multiple updates.​

93. How do you handle large amounts of data in React?

●​ Virtualize lists with react-window or
react-virtualized to improve performance.​

94. How do you implement email verification in a MERN
app?

●​ Send a verification email with a token link, store
the token in the DB, and verify it upon user click.​

95. How do you implement a multi-step form in React?

●​ Manage the step state and render different components
based on the step index.​

const [step, setStep] = useState(1);

return step === 1 ? <StepOne /> : <StepTwo />;

96. How do you handle background jobs in a MERN stack
application?

●​ Use Bull.js (Redis-based job queue) for handling
background tasks like email sending.​

const Queue = require('bull');

const emailQueue = new Queue('emailQueue');

emailQueue.process(async (job) => {

 console.log(`Sending email to ${job.data.email}`);

});

emailQueue.add({ email: 'user@example.com' });

97. What is the best way to deploy a MERN stack app on
AWS?

●​ Frontend: Deploy React on S3 + CloudFront.​

●​ Backend: Use EC2 (PM2), Elastic Beanstalk, or Lambda
(serverless).​

●​ Database: Use MongoDB Atlas (managed) or self-hosted
MongoDB on EC2.​

●​ Authentication: Use Cognito, OAuth, or Firebase Auth.​

●​ CI/CD: Use GitHub Actions, AWS CodePipeline, or
Jenkins.​

98. How do you handle database schema migrations in
MongoDB?

●​ Use Mongoose versioning or MongoDB migrations
libraries like migrate-mongo.​

npm install -g migrate-mongo

migrate-mongo init

migrate-mongo create add_new_field

migrate-mongo up

99. How do you integrate third-party payment gateways
like Stripe in a MERN app?

●​ Install Stripe SDK and create a backend API:​

const stripe = require('stripe')('your_secret_key');

app.post('/checkout', async (req, res) => {

 const session = await stripe.checkout.sessions.create({

 payment_method_types: ['card'],

 line_items: [{ price_data: { currency: 'usd',
unit_amount: 1000, product_data: { name: 'Course' } },
quantity: 1 }],

 mode: 'payment',

 success_url: 'https://yourapp.com/success',

 cancel_url: 'https://yourapp.com/cancel',

 });

 res.json({ id: session.id });

});

100. What are the key considerations for making a MERN
stack application production-ready?

●​ Security: Use JWT, HTTPS, helmet.js, CORS
restrictions.​

●​ Performance: Optimize MongoDB queries, React
rendering, and API response times.​

●​ Scalability: Use Docker, Kubernetes, or AWS services.​

●​ Logging & Monitoring: Use Winston, Morgan, Sentry, or
Datadog.​

●​ CI/CD: Automate deployment with GitHub Actions,
Jenkins, or AWS CodePipeline.​

	Basic Level (1-25)
	1. What is the MERN stack?
	2. What is MongoDB?
	3. What is Express.js?
	4. What is React.js?
	5. What is Node.js?
	6. How does the MERN stack work together?
	7. Why is the MERN stack popular?
	8. What is the difference between SQL and NoSQL?
	9. What is JSX in React?
	10. What is a REST API?
	11. How do you create a basic Express server?
	12. What is npm?
	13. What is useState in React?
	14. What is a functional component in React?
	15. How do you install MongoDB?
	16. What is middleware in Express.js?
	17. What is useEffect in React?
	18. What is the difference between class and functional components?
	19. What is props in React?
	20. What is the difference between React and React Native?
	21. How do you define a schema in Mongoose?
	22. What is CORS in Express.js?
	23. How do you handle form submission in React?
	24. What is the difference between state and props in React?
	25. How do you start a new React project?

	Intermediate Level (26-50)
	26. What is an arrow function in JavaScript?
	27. What is the purpose of MongoDB indexes?
	28. How do you fetch data in React using fetch API?
	29. What is a higher-order component (HOC) in React?
	30. What is map() in JavaScript?
	31. How do you use Express Router to structure your backend?
	32. How do you handle errors in Express.js?
	33. What is the purpose of useRef in React?
	34. What is useMemo in React, and why is it used?
	35. What is Redux, and why is it used in React?
	36. What are the main components of Redux?
	37. How do you create a Redux store?
	38. How do you update state in Redux?
	39. What is useDispatch and useSelector in React-Redux?
	40. What is Context API in React, and how does it compare to Redux?
	41. What is a Promise in JavaScript?
	42. What is async/await in JavaScript?
	43. How do you use JWT for authentication in MERN?
	44. How do you verify a JWT token in Express.js?
	45. How do you create a protected route in React?
	46. What is Axios, and why use it over fetch()?
	47. What is the difference between sessionStorage and localStorage?
	48. How do you optimize MongoDB queries?
	49. What is Mongoose populate() method?
	50. How do you set up Redux in a React project?

	Advanced Level (51-75)
	51. How do you manage authentication in MERN Stack?
	52. How does React Virtual DOM work?
	53. What is lazy loading in React?
	54. What are WebSockets, and how are they used?
	55. What is server-side rendering (SSR) in React?
	56. How do you implement SSR in React with Next.js?
	57. What is code splitting in React?
	58. How does React Suspense work?
	59. What are React Portals?
	60. How do you optimize React performance?
	61. What is GraphQL, and how does it compare to REST APIs?
	62. How do you implement GraphQL in a MERN stack app?
	63. What is WebSocket, and how is it used in a MERN app?
	64. What is MongoDB Aggregation?
	65. How do you handle transactions in MongoDB?
	66. What is Redux Thunk, and why is it used?
	67. How does useReducer work in React?
	68. How do you secure Express.js APIs?
	69. How do you prevent SQL/NoSQL injection attacks?
	70. What are Microservices, and how can they be used in MERN stack?
	71. How do you implement role-based access control (RBAC) in MERN?
	72. What is Docker, and how can you deploy a MERN stack app using it?
	73. How do you use PM2 to manage Node.js processes?
	74. How do you integrate Redis with a MERN stack app?
	75. How do you implement OAuth authentication in MERN stack?

	Technical-Level (76-95)
	76. How do you handle file uploads in a MERN app?
	77. How do you implement pagination in MongoDB?
	78. How do you improve the performance of MongoDB queries?
	79. How do you configure CORS in an Express.js app?
	80. How do you optimize React rendering performance?
	81. What is HOC (Higher-Order Component) in React?
	82. What is Debouncing in JavaScript, and how do you implement it?
	83. What is Throttling in JavaScript, and how does it differ from Debouncing?
	84. How do you create a custom React Hook?
	85. How do you configure environment variables in a MERN stack app?
	86. How do you implement WebSockets in MERN for real-time updates?
	87. How do you implement authentication middleware in Express.js?
	88. How do you use React Context API for global state management?
	89. How do you test a React component using Jest and React Testing Library?
	90. How do you test an Express.js API using Jest and Supertest?
	91. How do you secure MongoDB connections in production?
	92. What are the differences between useState and useReducer?
	93. How do you handle large amounts of data in React?
	94. How do you implement email verification in a MERN app?
	95. How do you implement a multi-step form in React?
	96. How do you handle background jobs in a MERN stack application?
	97. What is the best way to deploy a MERN stack app on AWS?
	98. How do you handle database schema migrations in MongoDB?
	99. How do you integrate third-party payment gateways like Stripe in a MERN app?
	100. What are the key considerations for making a MERN stack application production-ready?

