
 

MERN Stack 
 

Basic Level (1-25) 

1. What is the MERN stack? 

●​ MERN stands for MongoDB, Express.js, React.js, and Node.js, a 
full-stack JavaScript technology stack used for web development.​
 

2. What is MongoDB? 

●​ MongoDB is a NoSQL database that stores data in JSON-like BSON 
format for flexibility and scalability.​
 

3. What is Express.js? 

●​ Express.js is a backend web framework for Node.js that simplifies 
server-side development.​
 

4. What is React.js? 

●​ React.js is a JavaScript library used for building user interfaces, 
primarily for single-page applications (SPA).​
 

5. What is Node.js? 

●​ Node.js is a JavaScript runtime environment that allows executing 
JavaScript on the server-side.​
 

6. How does the MERN stack work together? 

●​ MongoDB stores data → Express.js handles backend APIs → 
React.js manages UI → Node.js executes backend logic.​
 

7. Why is the MERN stack popular? 



 

●​ Uses JavaScript for both frontend & backend, has a strong 
developer community, and offers high performance.​
 

8. What is the difference between SQL and NoSQL? 

●​ SQL databases are structured (e.g., MySQL), while NoSQL databases 
(e.g., MongoDB) store unstructured or semi-structured data.​
 

9. What is JSX in React? 

●​ JSX allows writing HTML inside JavaScript, making UI development 
more intuitive.​
 

10. What is a REST API? 

●​ A REST API is an architectural style using HTTP methods (GET, 
POST, PUT, DELETE) for data communication.​
 

11. How do you create a basic Express server? 
javascript 
CopyEdit 
const express = require('express'); 
const app = express(); 
app.listen(3000, () => console.log('Server running on 
port 3000')); 
 

12. What is npm? 

●​ npm (Node Package Manager) is a tool to manage JavaScript 
packages and dependencies.​
 

13. What is useState in React? 
A React Hook used to manage component-level state:​
​
 javascript​



 

CopyEdit​
const [count, setCount] = useState(0); 

●​  

14. What is a functional component in React? 

●​ A simple JavaScript function that returns JSX and doesn’t have lifecycle 
methods like class components.​
 

15. How do you install MongoDB? 

●​ Download from MongoDB official website and run mongod to start the 
server.​
 

16. What is middleware in Express.js? 

●​ Middleware functions process requests before they reach the final 
handler.​
 

17. What is useEffect in React? 

●​ A React Hook for managing side effects like API calls or event 
listeners.​
 

18. What is the difference between class and functional components? 

●​ Class components use this.state, while functional components use 
Hooks like useState.​
 

19. What is props in React? 

●​ Props (short for properties) allow data to be passed from parent to 
child components.​
 

20. What is the difference between React and React Native? 

https://www.mongodb.com


 

●​ React is for web applications, while React Native is for mobile app 
development.​
 

21. How do you define a schema in Mongoose? 
javascript 
CopyEdit 
const mongoose = require('mongoose'); 
const UserSchema = new mongoose.Schema({ name: String, 
email: String }); 
const User = mongoose.model('User', UserSchema); 
 

22. What is CORS in Express.js? 

●​ Cross-Origin Resource Sharing (CORS) allows requests from different 
domains.​
 

23. How do you handle form submission in React? 

●​ Using the onSubmit event and useState to manage form data.​
 

24. What is the difference between state and props in React? 

●​ State is mutable (internal), while props are immutable (passed from 
parent to child).​
 

25. How do you start a new React project? 

●​ Run: npx create-react-app my-app​
 

Intermediate Level (26-50) 

26. What is an arrow function in JavaScript? 
javascript 
CopyEdit 
const sum = (a, b) => a + b; 



 

 

27. What is the purpose of MongoDB indexes? 

●​ Indexes improve query performance by optimizing searches.​
 

28. How do you fetch data in React using fetch API? 
javascript 
CopyEdit 
useEffect(() => { 
   fetch('https://api.example.com/data') 
   .then(res => res.json()) 
   .then(data => setData(data)); 
}, []); 
 

29. What is a higher-order component (HOC) in React? 

●​ A function that takes a component and returns an enhanced 
component.​
 

30. What is map() in JavaScript? 

●​ An array method used to iterate and transform elements.​
 

31. How do you use Express Router to structure your backend? 

●​ Express Router helps in modularizing routes for better code 
management.​
 

javascript 
CopyEdit 
const express = require('express'); 
const router = express.Router(); 
router.get('/users', (req, res) => res.send('User 
list')); 
module.exports = router; 



 

 

32. How do you handle errors in Express.js? 

●​ Using an error-handling middleware:​
 

javascript 
CopyEdit 
app.use((err, req, res, next) => { 
  res.status(500).json({ error: err.message }); 
}); 
 

33. What is the purpose of useRef in React? 

●​ useRef creates a persistent mutable object without re-rendering the 
component.​
 

javascript 
CopyEdit 
const inputRef = useRef(); 
 

34. What is useMemo in React, and why is it used? 

●​ useMemo caches computations to optimize performance.​
 

javascript 
CopyEdit 
const memoizedValue = useMemo(() => 
computeExpensiveValue(data), [data]); 
 

35. What is Redux, and why is it used in React? 

●​ Redux is a state management library that provides a centralized 
store for managing app-wide state.​
 



 

36. What are the main components of Redux? 

●​ Store (holds state), Actions (define events), Reducers (modify state), 
Dispatch (sends actions).​
 

37. How do you create a Redux store? 
javascript 
CopyEdit 
import { createStore } from 'redux'; 
const store = createStore(reducer); 
 

38. How do you update state in Redux? 

●​ Using dispatch():​
 

javascript 
CopyEdit 
store.dispatch({ type: 'INCREMENT' }); 
 

39. What is useDispatch and useSelector in React-Redux? 

●​ useDispatch() sends actions to Redux, useSelector() gets state 
from the store.​
 

40. What is Context API in React, and how does it compare to Redux? 

●​ Context API provides a way to pass data down the component tree 
without props drilling. It is simpler than Redux but less powerful for 
complex state management.​
 

41. What is a Promise in JavaScript? 

●​ A Promise represents an asynchronous operation that may succeed 
(resolve()) or fail (reject()).​
 



 

javascript 
CopyEdit 
let myPromise = new Promise((resolve, reject) => { 
resolve("Success"); }); 
 

42. What is async/await in JavaScript? 

●​ It is used to handle asynchronous code in a synchronous-like manner.​
 

javascript 
CopyEdit 
async function fetchData() { 
  let response = await 
fetch('https://api.example.com/data'); 
  let data = await response.json(); 
  console.log(data); 
} 
 

43. How do you use JWT for authentication in MERN? 

●​ Generate JWT token:​
 

javascript 
CopyEdit 
const jwt = require('jsonwebtoken'); 
const token = jwt.sign({ userId: user._id }, 'secretKey', 
{ expiresIn: '1h' }); 
 

44. How do you verify a JWT token in Express.js? 

●​ Middleware to protect routes:​
 

javascript 
CopyEdit 
app.use('/protected', (req, res, next) => { 



 

  const token = req.headers['authorization']; 
  jwt.verify(token, 'secretKey', (err, decoded) => { 
    if (err) return res.status(401).send('Unauthorized'); 
    req.user = decoded; 
    next(); 
  }); 
}); 
 

45. How do you create a protected route in React? 

●​ Using React Router:​
 

javascript 
CopyEdit 
const PrivateRoute = ({ component: Component, ...rest }) 
=> { 
  const isAuthenticated = 
!!localStorage.getItem('token'); 
  return ( 
    <Route {...rest} render={(props) => ( 
      isAuthenticated ? <Component {...props} /> : 
<Redirect to="/login" /> 
    )} /> 
  ); 
}; 
 

46. What is Axios, and why use it over fetch()? 

●​ Axios is a Promise-based HTTP client with features like request 
canceling and automatic JSON parsing.​
 

javascript 
CopyEdit 
axios.get('/api/data').then(response => 
console.log(response.data)); 



 

 

47. What is the difference between sessionStorage and 
localStorage? 

●​ sessionStorage stores data for the session, while localStorage 
persists until manually cleared.​
 

48. How do you optimize MongoDB queries? 

●​ Use indexes, limit fields returned, avoid unnecessary queries, and 
use aggregation pipelines.​
 

49. What is Mongoose populate() method? 

●​ It is used to fetch referenced documents in MongoDB.​
 

javascript 
CopyEdit 
User.find().populate('posts').exec((err, users) => 
console.log(users)); 
 

50. How do you set up Redux in a React project? 

●​ Install dependencies:​
 

bash 
CopyEdit 
npm install redux react-redux 
 

●​ Create a Redux store:​
 

javascript 
CopyEdit 
import { createStore } from 'redux'; 



 

const store = createStore(reducer); 
 

●​ Wrap the app with <Provider>:​
 

javascript 
CopyEdit 
import { Provider } from 'react-redux'; 
<Provider store={store}> 
  <App /> 
</Provider> 
 

Advanced Level (51-75) 

51. How do you manage authentication in MERN Stack? 

●​ Using JWT (JSON Web Token) for user authentication.​
 

52. How does React Virtual DOM work? 

●​ It updates only the changed parts of the UI 
efficiently.​
 

53. What is lazy loading in React? 

javascript 
CopyEdit 
const LazyComponent = React.lazy(() => 
import('./Component')); 
 

54. What are WebSockets, and how are they used? 

●​ WebSockets enable real-time communication between the 
server and client. 



 

55. What is server-side rendering (SSR) in React? 

●​ SSR renders React components on the server instead of 
the browser, improving performance and SEO.​
 

56. How do you implement SSR in React with Next.js? 

●​ Using getServerSideProps() in Next.js:​
 

export async function getServerSideProps() { 
  const res = await 
fetch('https://api.example.com/data'); 
  const data = await res.json(); 
  return { props: { data } }; 
} 
 

●​ This fetches data before rendering the page.​
 

57. What is code splitting in React? 

●​ It loads JavaScript code only when needed, improving 
performance.​
 

const LazyComponent = React.lazy(() => 
import('./Component')); 
 

58. How does React Suspense work? 

●​ It handles lazy loading components and displays a 
fallback UI while loading.​
 

<Suspense fallback={<div>Loading...</div>}> 



 

  <LazyComponent /> 
</Suspense> 
 

59. What are React Portals? 

●​ Portals render components outside their parent DOM 
hierarchy, useful for modals.​
 

ReactDOM.createPortal(<Modal />, 
document.getElementById('modal-root')); 
 

60. How do you optimize React performance? 

●​ Use React.memo(), useCallback(), useMemo(), lazy 
loading, and optimize re-renders.​
 

61. What is GraphQL, and how does it compare to REST 
APIs? 

●​ GraphQL allows fetching only required data with a 
single query, unlike REST.​
 

62. How do you implement GraphQL in a MERN stack app? 

●​ Install GraphQL dependencies:​
 

npm install express-graphql graphql 
 

●​ Define a schema:​
 



 

const { GraphQLObjectType, GraphQLSchema, GraphQLString } 
= require('graphql'); 
const RootQuery = new GraphQLObjectType({ 
  name: 'RootQueryType', 
  fields: { message: { type: GraphQLString, resolve() { 
return "Hello World"; } } } 
}); 
module.exports = new GraphQLSchema({ query: RootQuery }); 
 

63. What is WebSocket, and how is it used in a MERN app? 

●​ WebSockets enable real-time communication using 
bidirectional connections.​
 

const socket = new WebSocket('ws://localhost:5000'); 
 

64. What is MongoDB Aggregation? 

●​ A framework for processing and transforming data in 
MongoDB.​
 

db.users.aggregate([{ $group: { _id: "$role", count: { 
$sum: 1 } } }]); 
 

65. How do you handle transactions in MongoDB? 

●​ Using the session object with transactions:​
 

const session = await mongoose.startSession(); 
session.startTransaction(); 
try { 



 

  await User.updateOne({ _id: id }, { balance: newBalance 
}, { session }); 
  await session.commitTransaction(); 
} catch (error) { 
  await session.abortTransaction(); 
} 
 

66. What is Redux Thunk, and why is it used? 

●​ Redux Thunk handles async operations inside Redux 
actions.​
 

export const fetchData = () => async (dispatch) => { 
  const response = await fetch('/api/data'); 
  const data = await response.json(); 
  dispatch({ type: 'FETCH_SUCCESS', payload: data }); 
}; 
 

67. How does useReducer work in React? 

●​ A React Hook alternative to Redux for managing state 
with a reducer function.​
 

const reducer = (state, action) => action.type === 
"increment" ? state + 1 : state; 
const [count, dispatch] = useReducer(reducer, 0); 
 

68. How do you secure Express.js APIs? 

●​ Use JWT authentication, input validation, CORS, 
HTTPS, and rate limiting.​
 



 

69. How do you prevent SQL/NoSQL injection attacks? 

●​ Sanitize inputs, use parameterized queries, and limit 
database access.​
 

70. What are Microservices, and how can they be used in 
MERN stack? 

●​ Microservices split an app into small, independent 
services communicating via APIs.​
 

●​ Example: Separate auth, payments, and user services 
as independent apps.​
 

71. How do you implement role-based access control (RBAC) 
in MERN? 

●​ Middleware checks user roles before granting access.​
 

const authorize = (roles) => (req, res, next) => { 
  if (!roles.includes(req.user.role)) return 
res.status(403).send("Forbidden"); 
  next(); 
}; 
 

72. What is Docker, and how can you deploy a MERN stack 
app using it? 

●​ Docker containerizes the app for easy deployment.​
 

●​ Sample Dockerfile for Node.js backend:​
 

FROM node:14 



 

WORKDIR /app 
COPY package.json . 
RUN npm install 
COPY . . 
CMD ["node", "server.js"] 
 

73. How do you use PM2 to manage Node.js processes? 

●​ Install PM2 and start the server:​
 

npm install -g pm2 
pm2 start server.js 
 

74. How do you integrate Redis with a MERN stack app? 

●​ Install Redis and use it as a cache layer:​
 

const redis = require('redis'); 
const client = redis.createClient(); 
client.set("key", "value"); 
 

75. How do you implement OAuth authentication in MERN 
stack? 

●​ Use Google OAuth or Facebook Login with Passport.js.​
 

passport.use(new GoogleStrategy({ clientID, clientSecret, 
callbackURL }, 
  (accessToken, refreshToken, profile, done) => { 
    User.findOrCreate({ googleId: profile.id }, done); 
  } 



 

));
 

Here are 20 technical-level MERN Stack interview 
questions and answers, continuing from 76 to 95. 

 

Technical-Level (76-95) 

76. How do you handle file uploads in a MERN app? 

●​ Using multer in Express.js:​
 

const multer = require('multer'); 

const upload = multer({ dest: 'uploads/' }); 

app.post('/upload', upload.single('file'), (req, res) => 
res.send(req.file)); 

 

77. How do you implement pagination in MongoDB? 

●​ Using .skip() and .limit():​
 

const page = 2; 

const limit = 10; 

const users = await User.find().skip((page - 1) * 
limit).limit(limit); 

 

78. How do you improve the performance of MongoDB 
queries? 



 

●​ Index fields, use projections, limit the number of 
documents returned, and optimize aggregation 
pipelines.​
 

79. How do you configure CORS in an Express.js app? 

●​ Using cors middleware:​
 

const cors = require('cors'); 

app.use(cors({ origin: 'http://example.com' })); 

 

80. How do you optimize React rendering performance? 

●​ Use React.memo(), useCallback(), useMemo(), 
shouldComponentUpdate(), and React Profiler.​
 

81. What is HOC (Higher-Order Component) in React? 

●​ A function that takes a component and returns a new 
component with added functionality.​
 

const withLogger = (Component) => (props) => { 

  console.log("Rendered"); 

  return <Component {...props} />; 

}; 

 

82. What is Debouncing in JavaScript, and how do you 
implement it? 



 

●​ Delays function execution until after a certain time 
passes.​
 

function debounce(fn, delay) { 

  let timer; 

  return (...args) => { 

    clearTimeout(timer); 

    timer = setTimeout(() => fn(...args), delay); 

  }; 

} 

 

83. What is Throttling in JavaScript, and how does it 
differ from Debouncing? 

●​ Throttling limits function execution at a fixed 
interval.​
 

function throttle(fn, limit) { 

  let lastCall = 0; 

  return (...args) => { 

    const now = Date.now(); 

    if (now - lastCall >= limit) { 

      lastCall = now; 

      fn(...args); 

    } 



 

  }; 

} 

 

84. How do you create a custom React Hook? 

●​ Example: useFetch hook for fetching data.​
 

function useFetch(url) { 

  const [data, setData] = useState(null); 

  useEffect(() => { 

    fetch(url).then(res => res.json()).then(setData); 

  }, [url]); 

  return data; 

} 

 

85. How do you configure environment variables in a MERN 
stack app? 

●​ Backend: Use .env file with dotenv:​
 

require('dotenv').config(); 

const PORT = process.env.PORT; 

 

●​ Frontend: Store variables in .env with REACT_APP_ 
prefix.​
 



 

86. How do you implement WebSockets in MERN for real-time 
updates? 

●​ Use socket.io:​
 

const io = require('socket.io')(server); 

io.on('connection', (socket) => { 

  console.log('User connected'); 

  socket.emit('message', 'Hello from server'); 

}); 

 

87. How do you implement authentication middleware in 
Express.js? 

function authMiddleware(req, res, next) { 

  const token = req.headers.authorization; 

  if (!token) return 
res.status(401).send('Unauthorized'); 

  jwt.verify(token, 'secretKey', (err, user) => { 

    if (err) return res.status(403).send('Forbidden'); 

    req.user = user; 

    next(); 

  }); 

} 

 



 

88. How do you use React Context API for global state 
management? 

const MyContext = createContext(); 

function MyProvider({ children }) { 

  const [state, setState] = useState("value"); 

  return <MyContext.Provider 
value={state}>{children}</MyContext.Provider>; 

} 

 

89. How do you test a React component using Jest and 
React Testing Library? 

import { render, screen } from '@testing-library/react'; 

import MyComponent from './MyComponent'; 

test('renders component', () => { 

  render(<MyComponent />); 

  expect(screen.getByText(/hello/i)).toBeInTheDocument(); 

}); 

 

90. How do you test an Express.js API using Jest and 
Supertest? 

const request = require('supertest'); 

const app = require('../server'); 

test('GET /api/data', async () => { 



 

  const res = await request(app).get('/api/data'); 

  expect(res.statusCode).toBe(200); 

}); 

 

91. How do you secure MongoDB connections in production? 

●​ Use environment variables for credentials, enable 
authentication, whitelist IPs, and disable public 
access.​
 

92. What are the differences between useState and 
useReducer? 

●​ useState is simpler for small state changes, while 
useReducer is better for complex state logic with 
multiple updates.​
 

93. How do you handle large amounts of data in React? 

●​ Virtualize lists with react-window or 
react-virtualized to improve performance.​
 

94. How do you implement email verification in a MERN 
app? 

●​ Send a verification email with a token link, store 
the token in the DB, and verify it upon user click.​
 

95. How do you implement a multi-step form in React? 



 

●​ Manage the step state and render different components 
based on the step index.​
 

const [step, setStep] = useState(1); 

return step === 1 ? <StepOne /> : <StepTwo />; 

96. How do you handle background jobs in a MERN stack 
application? 

●​ Use Bull.js (Redis-based job queue) for handling 
background tasks like email sending.​
 

const Queue = require('bull'); 

const emailQueue = new Queue('emailQueue'); 

emailQueue.process(async (job) => { 

  console.log(`Sending email to ${job.data.email}`); 

}); 

emailQueue.add({ email: 'user@example.com' }); 

 

97. What is the best way to deploy a MERN stack app on 
AWS? 

●​ Frontend: Deploy React on S3 + CloudFront.​
 

●​ Backend: Use EC2 (PM2), Elastic Beanstalk, or Lambda 
(serverless).​
 

●​ Database: Use MongoDB Atlas (managed) or self-hosted 
MongoDB on EC2.​
 



 

●​ Authentication: Use Cognito, OAuth, or Firebase Auth.​
 

●​ CI/CD: Use GitHub Actions, AWS CodePipeline, or 
Jenkins.​
 

98. How do you handle database schema migrations in 
MongoDB? 

●​ Use Mongoose versioning or MongoDB migrations 
libraries like migrate-mongo.​
 

npm install -g migrate-mongo 

migrate-mongo init 

migrate-mongo create add_new_field 

migrate-mongo up 

 

99. How do you integrate third-party payment gateways 
like Stripe in a MERN app? 

●​ Install Stripe SDK and create a backend API:​
 

const stripe = require('stripe')('your_secret_key'); 

app.post('/checkout', async (req, res) => { 

  const session = await stripe.checkout.sessions.create({ 

    payment_method_types: ['card'], 

    line_items: [{ price_data: { currency: 'usd', 
unit_amount: 1000, product_data: { name: 'Course' } }, 
quantity: 1 }], 



 

    mode: 'payment', 

    success_url: 'https://yourapp.com/success', 

    cancel_url: 'https://yourapp.com/cancel', 

  }); 

  res.json({ id: session.id }); 

}); 

 

100. What are the key considerations for making a MERN 
stack application production-ready? 

●​ Security: Use JWT, HTTPS, helmet.js, CORS 
restrictions.​
 

●​ Performance: Optimize MongoDB queries, React 
rendering, and API response times.​
 

●​ Scalability: Use Docker, Kubernetes, or AWS services.​
 

●​ Logging & Monitoring: Use Winston, Morgan, Sentry, or 
Datadog.​
 

●​ CI/CD: Automate deployment with GitHub Actions, 
Jenkins, or AWS CodePipeline.​
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