
 

Graph Ql 
 

Basic Questions (1-25) 

1. What is GraphQL? 
 

○ GraphQL is a query language for APIs and a runtime for 
executing queries against your data. It allows clients to request 
only the data they need and makes it easier to evolve APIs over 
time. 
 

2. How is GraphQL different from REST APIs? 
 

○ In REST, you access multiple endpoints to fetch related data. In 
GraphQL, there’s a single endpoint for querying data, allowing for 
more efficient data retrieval, and clients can specify what data 
they need. 
 

3. What are Queries in GraphQL? 
 

○ Queries are read-only operations in GraphQL that allow clients to 
request data from the server. 
 

4. What is a Mutation in GraphQL? 
 

○ A Mutation is an operation in GraphQL used to modify server-side 
data (create, update, or delete) and return the updated data. 
 

5. What is a Subscription in GraphQL? 
 

○ Subscriptions allow clients to subscribe to real-time updates from 
the server, typically used for events like notifications or updates. 
 

6. What are GraphQL Schemas? 
 

○ A GraphQL schema defines the structure of your API, including 
types, queries, and mutations. It acts as the contract between the 
client and the server. 
 



 

7. What are Types in GraphQL? 
 

○ Types define the shape of the data that can be queried or 
mutated in GraphQL. Common types include Query, Mutation, 
Object, Input, and Enum. 
 

8. What is a Resolver in GraphQL? 
 

○ A resolver is a function that handles the fetching of data for a 
particular field in the GraphQL schema. 
 

9. What is the role of a GraphQL server? 
 

○ A GraphQL server receives queries and mutations from the client, 
processes them via resolvers, and returns the requested data. 
 

10. What is a Field in GraphQL? 
 

○ A field in GraphQL corresponds to a specific attribute or 
relationship on an object type that clients can query or mutate. 
 

11. What is Introspection in GraphQL? 
 

○ Introspection is the ability to query a GraphQL API for its schema, 
allowing tools like GraphiQL to automatically generate 
documentation and provide auto-completion. 
 

12. What is a Scalar Type in GraphQL? 
 

○ Scalar types are the basic data types in GraphQL, such as 
String, Int, Float, Boolean, and ID. 
 

13. What are Input Types in GraphQL? 
 

○ Input types are used to define the structure of the input data for 
mutations, similar to how types are used for queries. 
 

14. What is the purpose of the @deprecated directive in GraphQL? 
 



 

○ The @deprecated directive is used to mark a field or an 
argument as deprecated in the GraphQL schema, informing 
consumers of the API that it will be removed in the future. 
 

15. What is a List Type in GraphQL? 
 

○ A list type is an array of items of a specified type. For example, 
[String] represents a list of strings. 
 

16. How do you handle errors in GraphQL? 
 

○ Errors are returned in the errors field of the response, with 
details about what went wrong, while the data field may contain 
partial results. 
 

17. What is the difference between Query and Mutation in 
GraphQL? 
 

○ A Query is used to fetch data, while a Mutation is used to 
modify data. 
 

18. What is the purpose of the @include directive in GraphQL? 
 

○ The @include directive allows you to conditionally include fields 
in a query based on a boolean value. 
 

19. What is the purpose of the @skip directive in GraphQL? 
 

○ The @skip directive allows you to conditionally skip fields in a 
query based on a boolean value. 
 

20. How does pagination work in GraphQL? 
 

○ Pagination in GraphQL is often handled by returning a subset of 
data (e.g., using first, last, before, after) along with a 
cursor to indicate the next set of results. 
 

21. What is a GraphQL Schema Definition Language (SDL)? 
 



 

○ SDL is a syntax used to define GraphQL schemas in a declarative 
way. It allows developers to define types, queries, mutations, and 
subscriptions. 
 

22. Can you have multiple queries in a single request? 
 

○ Yes, GraphQL allows multiple queries to be sent in a single 
request, and each query can be named to differentiate them. 
 

23. What is a Fragment in GraphQL? 
 

○ A fragment is a reusable unit of a query that allows you to define 
a part of a query and reuse it in different places. 
 

24. What is a GraphQL Client? 
 

○ A GraphQL client is a tool or library used to interact with a 
GraphQL server, such as Apollo Client or Relay. 
 

25. What is the ID type in GraphQL? 
 

○ The ID type is a special scalar type in GraphQL used to 
represent unique identifiers. 
 

Intermediate Questions (26-50) 

26. What are the advantages of using GraphQL over REST? 
 

○ GraphQL reduces over-fetching and under-fetching of data, 
provides a single endpoint, and allows clients to specify exactly 
what data they need. 
 

27. How do you implement authentication in GraphQL? 
 

○ Authentication is often handled via middleware, where the server 
checks for a valid token in the request headers before resolving 
the GraphQL query. 
 



 

28. What are the common design patterns in GraphQL? 
 

○ Common patterns include query batching, pagination, 
connection-based pagination, error handling, and authorization 
mechanisms. 
 

29. What are the differences between Query and Subscription? 
 

○ Query is used to fetch data, while Subscription is used for 
real-time updates from the server. 
 

30. How do you handle CORS in GraphQL? 
 

○ CORS is handled at the server level, where the server specifies 
which domains are allowed to access the GraphQL endpoint. 
 

31. What is Apollo Client? 
 

○ Apollo Client is a popular JavaScript library used to interact with 
GraphQL APIs. It simplifies data fetching, caching, and managing 
state. 
 

32. How do you handle batching in GraphQL? 
 

○ Batching in GraphQL allows you to send multiple queries in one 
request, which reduces the number of network requests. 
 

33. How does GraphQL handle nested data? 
 

○ GraphQL supports nested queries, where you can request deeply 
nested data by specifying multiple levels of fields in a single 
query. 
 

34. What are Connection and Edge in GraphQL? 
 

○ Connections represent paginated data, and edges contain nodes 
(the actual data). These structures help in implementing 
pagination with Relay. 
 



 

35. What is the @deprecated directive used for? 
 

○ The @deprecated directive is used to mark a field or enum 
value as deprecated, signaling that it will be removed in the 
future. 
 

36. What are GraphQL resolvers and how do they work? 
 

○ Resolvers are functions that map fields in the schema to data 
sources, like databases, and resolve the values of those fields. 
 

37. What is a DataLoader in GraphQL? 
 

○ DataLoader is a utility to optimize data fetching by batching 
requests and caching results to avoid unnecessary database 
calls. 
 

38. What is the difference between @include and @skip in 
GraphQL? 
 

○ @include is used to conditionally include a field, while @skip is 
used to conditionally exclude a field. 
 

39. What is Relay in GraphQL? 
 

○ Relay is a JavaScript framework for building data-driven React 
applications with GraphQL, focusing on efficient data fetching and 
management. 
 

40. How do you handle file uploads in GraphQL? 
 

○ File uploads in GraphQL can be handled using the 
graphql-upload package, which allows for multipart requests 
to send files along with GraphQL queries. 
 

41. What is a Union type in GraphQL? 
 



 

○ A Union type allows a field to return different types of objects, 
making the schema flexible for multiple types of responses. 
 

42. What is a Mutation’s return type in GraphQL? 
 

○ The return type of a mutation is typically a single object, which 
can be the modified data or any other data related to the 
mutation. 
 

43. What are some tools for testing GraphQL APIs? 
 

○ Tools like Apollo Client, Postman, GraphiQL, and Insomnia can 
be used for testing GraphQL queries and mutations. 
 

44. How do you implement pagination in GraphQL? 
 

○ Pagination is often implemented using a cursor-based system, 
returning results in pages and including a cursor to indicate the 
position of the next set of data. 
 

45. What is GraphQL introspection and how does it help 
developers? 
 

○ Introspection allows developers to query the GraphQL schema 
itself to understand the types, queries, mutations, and 
subscriptions available. 
 

46. How do you prevent over-fetching in GraphQL? 
 

○ Clients should request only the data they need. GraphQL's 
flexibility allows clients to specify the exact data, reducing 
over-fetching. 
 

47. What is Apollo Server? 
 

○ Apollo Server is a library that helps you build a GraphQL API by 
providing a simple setup for the server, resolvers, and schemas. 
 

48. How does Apollo Client manage local state? 
 



 

○ Apollo Client can manage both remote and local state, using its 
cache to store local data and combining it with server-side data. 
 

49. How can you handle authorization in GraphQL? 
 

○ Authorization is handled by adding authentication middleware to 
the GraphQL server, where you check if the user has the proper 
permissions to access data. 
 

50. What is GraphQL over HTTP? 
 

○ GraphQL is typically served over HTTP, where POST requests 
are used to send queries and mutations to the server. 
 

Advanced Questions (51-75) 

51. How does GraphQL handle caching? 
 

○ Caching in GraphQL is usually handled at the client or server 
level, often using libraries like Apollo Client’s cache or custom 
cache implementations. 
 

52. What are the common performance bottlenecks in GraphQL? 
 

○ N+1 queries, large payloads, and inefficient resolvers can lead to 
performance bottlenecks in GraphQL. 
 

53. How can you optimize GraphQL queries? 
 

○ Optimizations include batching queries, using fragments to avoid 
repetition, and caching responses to reduce the number of server 
requests. 
 

54. How do you implement authorization in GraphQL? 
 

○ Authorization can be handled in the resolver level or middleware, 
where permissions are checked before resolving a query. 
 

55. What is a Batch Query in GraphQL? 
 



 

○ A batch query allows multiple queries to be sent in one HTTP 
request, reducing the number of HTTP calls required. 
 

56. How can you avoid the N+1 problem in GraphQL? 
 

○ The N+1 problem can be avoided by batching database queries, 
using a tool like DataLoader to cache results and avoid redundant 
fetches. 
 

57. What is Schema Stitching in GraphQL? 
 

○ Schema stitching is a technique used to combine multiple 
GraphQL schemas into a single schema, allowing you to merge 
APIs from different sources. 
 

58. How do you handle rate-limiting in GraphQL? 
 

○ Rate limiting can be handled at the server level by checking the 
number of requests per user and limiting excessive API calls. 
 

59. What is Apollo Federation? 
 

○ Apollo Federation is a method for building a distributed GraphQL 
architecture by combining multiple GraphQL services into a single 
data graph. 
 

60. What are the benefits of using GraphQL subscriptions? 
 

○ Subscriptions provide real-time data updates to clients, enabling 
use cases like live chat, notifications, or any real-time updates. 
 

61. How do you test resolvers in GraphQL? 
 

○ Resolvers can be tested using mock data and calling the resolver 
functions directly, or using testing frameworks like Jest. 
 

62. What is a GraphQL Data Source? 
 



 

○ A data source is a method or class that abstracts fetching data 
from a particular API or database. It's often used in Apollo Server. 
 

63. How can you prevent abusive queries in GraphQL? 
 

○ Abusive queries can be prevented by limiting query depth, using 
query complexity analysis, or rate-limiting the number of requests 
a user can make. 
 

64. How do you handle GraphQL query complexity? 
 

○ Query complexity can be managed by setting depth limits, 
calculating query cost, and rejecting overly complex queries. 
 

65. What is GraphQL Persisted Queries? 
 

○ Persisted queries are pre-saved GraphQL queries that can be 
referenced by their unique identifier, reducing the need to send 
full query strings. 
 

66. How do you handle errors in GraphQL efficiently? 
 

○ Errors are returned in a standard errors array, but you can also 
implement custom error handling by adding detailed error codes 
or messages. 
 

67. What are the best practices for organizing a GraphQL schema? 
 

○ Best practices include modularizing the schema into different 
files, keeping it DRY, and using types and resolvers that follow a 
consistent naming convention. 
 

68. What are GraphQL directives, and how do you use them? 
 

○ Directives like @include, @skip, and @deprecated are used 
to modify the execution behavior of GraphQL operations. 
 

69. What is GraphQL Query Batching? 
 



 

○ Query batching is the ability to send multiple GraphQL queries in 
a single request, improving efficiency and reducing the number of 
HTTP requests. 
 

70. How does Apollo Client handle caching and state management? 
 

○ Apollo Client automatically caches query results and uses a 
normalized cache to manage client-side state and re-fetch data 
only when necessary. 
 

71. What is a Resolver Pipeline in GraphQL? 
 

○ A resolver pipeline refers to the series of steps that data goes 
through when a resolver is executed, including validation, 
fetching, and transformation. 
 

72. What is GraphQL Query Optimization? 
 

○ Query optimization involves strategies like reducing nested 
queries, using fragments, and minimizing the data returned by 
avoiding unnecessary fields. 
 

73. How do you secure a GraphQL API? 
 

○ You can secure a GraphQL API using authentication tokens, 
role-based access control, and applying security practices like 
query depth limiting. 
 

74. What is the GraphQL Query Complexity analysis? 
 

○ Query complexity analysis assigns a "cost" to each query and 
limits the total allowed complexity, preventing overly expensive 
queries from being run. 
 

75. What are GraphQL Best Practices? 
 

○ Best practices include using a single GraphQL endpoint, 
implementing caching, validating queries, handling errors 
consistently, and securing the API with proper authentication. 
 



 

Technical Questions (76-100) 

76. How does Apollo Server handle multiple resolvers? 
 

○ Apollo Server allows defining multiple resolvers and organizes 
them into a single schema, which can then be processed by the 
server to resolve queries. 
 

77. What is the difference between @include and @skip 
directives? 
 

○ @include includes a field based on a condition, while @skip 
excludes it based on a condition. 
 

78. How do you implement caching in GraphQL? 
 

○ Caching in GraphQL can be handled by using caching 
mechanisms in the client or server, such as Apollo Client’s cache 
or Redis for the server. 
 

79. How does GraphQL handle batch queries? 
 

○ Batch queries allow multiple queries to be sent in one HTTP 
request, reducing the number of network calls and improving 
performance. 
 

80. How do you handle GraphQL subscriptions for real-time 
updates? 
 

○ Subscriptions in GraphQL are implemented with WebSockets or 
other real-time protocols, allowing clients to subscribe to data 
updates. 
 

81. What is Apollo Federation, and how does it work? 
 

○ Apollo Federation is a method for building a distributed GraphQL 
architecture by splitting the schema into different services 
(microservices) that can be combined. 
 



 

82. How do you secure a GraphQL endpoint? 
 

○ Securing a GraphQL endpoint can be achieved by using 
authentication tokens (JWTs), rate-limiting requests, and using 
role-based access control. 
 

83. What is the role of a Schema Definition Language (SDL) in 
GraphQL? 
 

○ SDL allows you to define your schema in a declarative syntax, 
describing types, queries, mutations, and subscriptions. 
 

84. How does the N+1 query problem affect GraphQL performance? 
 

○ The N+1 problem occurs when multiple database queries are 
made to fetch related data, leading to performance bottlenecks. It 
can be mitigated using tools like DataLoader. 
 

85. How do you deal with circular dependencies in GraphQL 
schemas? 
 

○ Circular dependencies can be managed by breaking down the 
schema into smaller parts and carefully managing type 
references. 
 

86. How can you implement query depth limits in GraphQL? 
 

○ Query depth limits can be implemented by analyzing the query’s 
complexity and rejecting queries that exceed a specified depth. 
 

87. What is GraphQL Schema Stitching? 
 

○ Schema stitching allows you to combine multiple GraphQL 
schemas into one, creating a unified data graph from multiple 
services. 
 

88. How do you ensure consistent error handling in GraphQL? 
 

○ Consistent error handling can be achieved by defining custom 
error messages, using error codes, and maintaining a standard 



 

structure for error responses. 
 

89. What is the best way to handle real-time data with GraphQL? 
 

○ Real-time data can be handled with GraphQL subscriptions, 
allowing clients to listen for updates via WebSockets or similar 
technologies. 
 

90. How does Apollo Client handle optimistic UI? 
 

○ Apollo Client can handle optimistic UI by predicting the result of a 
mutation and updating the local cache immediately while waiting 
for the server response. 
 

91. How do you handle large payloads in GraphQL? 
 

○ Large payloads can be managed by paginating data, using 
batching, and implementing proper caching strategies to reduce 
the load on the server. 
 

92. What is a DataLoader, and how is it used in GraphQL? 
 

○ DataLoader is a utility that batches and caches database 
requests, helping to avoid the N+1 query problem in GraphQL 
resolvers. 
 

93. How does Apollo Server resolve conflicts between different 
schema files? 
 

○ Apollo Server resolves conflicts by merging multiple schema files 
into a single schema using the mergeSchemas utility. 
 

94. How do you manage cross-origin requests in GraphQL? 
 

○ Cross-origin requests (CORS) can be managed by setting 
appropriate headers in the GraphQL server to allow requests from 
specific origins. 
 

95. What is a persistent query, and why is it useful in GraphQL? 
 



 

○ Persistent queries allow the server to store queries with unique 
IDs and reference them instead of sending full queries, improving 
performance and security. 
 

96. How do you handle rate-limiting in GraphQL? 
 

○ Rate-limiting can be implemented using middleware or API 
gateways to limit the number of requests a user can make in a 
given time frame. 
 

97. What are the benefits of using Apollo Client for GraphQL? 
 

● Apollo Client provides caching, query batching, local state 
management, and easy integration with React or other frameworks. 
 

98. How does GraphQL handle query complexity? 
 

○ GraphQL can analyze query complexity by calculating the cost of 
each field and rejecting queries that exceed a predefined 
complexity threshold. 
 

99. What is the best way to structure a large GraphQL schema? 
 

○ Large schemas should be modularized into different files, 
grouping related types, queries, and mutations into separate 
modules for easier maintenance. 
 

100. What are the most common GraphQL security vulnerabilities? - 
Common vulnerabilities include insecure direct object references 
(IDOR), excessive data exposure, and denial of service (DoS) via 
complex queries. Preventative measures include using authentication, 
query depth limits, and rate-limiting. 
 

 


	Basic Questions (1-25) 
	Intermediate Questions (26-50) 
	Advanced Questions (51-75) 
	Technical Questions (76-100) 

