
 

Graph Ql 
 

Basic Questions (1-25) 

1.​ What is GraphQL?​
 

○​ GraphQL is a query language for APIs and a runtime for 
executing queries against your data. It allows clients to request 
only the data they need and makes it easier to evolve APIs over 
time.​
 

2.​ How is GraphQL different from REST APIs?​
 

○​ In REST, you access multiple endpoints to fetch related data. In 
GraphQL, there’s a single endpoint for querying data, allowing for 
more efficient data retrieval, and clients can specify what data 
they need.​
 

3.​ What are Queries in GraphQL?​
 

○​ Queries are read-only operations in GraphQL that allow clients to 
request data from the server.​
 

4.​ What is a Mutation in GraphQL?​
 

○​ A Mutation is an operation in GraphQL used to modify server-side 
data (create, update, or delete) and return the updated data.​
 

5.​ What is a Subscription in GraphQL?​
 

○​ Subscriptions allow clients to subscribe to real-time updates from 
the server, typically used for events like notifications or updates.​
 

6.​ What are GraphQL Schemas?​
 

○​ A GraphQL schema defines the structure of your API, including 
types, queries, and mutations. It acts as the contract between the 
client and the server.​
 



 

7.​ What are Types in GraphQL?​
 

○​ Types define the shape of the data that can be queried or 
mutated in GraphQL. Common types include Query, Mutation, 
Object, Input, and Enum.​
 

8.​ What is a Resolver in GraphQL?​
 

○​ A resolver is a function that handles the fetching of data for a 
particular field in the GraphQL schema.​
 

9.​ What is the role of a GraphQL server?​
 

○​ A GraphQL server receives queries and mutations from the client, 
processes them via resolvers, and returns the requested data.​
 

10.​ What is a Field in GraphQL?​
 

○​ A field in GraphQL corresponds to a specific attribute or 
relationship on an object type that clients can query or mutate.​
 

11.​What is Introspection in GraphQL?​
 

○​ Introspection is the ability to query a GraphQL API for its schema, 
allowing tools like GraphiQL to automatically generate 
documentation and provide auto-completion.​
 

12.​ What is a Scalar Type in GraphQL?​
 

○​ Scalar types are the basic data types in GraphQL, such as 
String, Int, Float, Boolean, and ID.​
 

13.​ What are Input Types in GraphQL?​
 

○​ Input types are used to define the structure of the input data for 
mutations, similar to how types are used for queries.​
 

14.​ What is the purpose of the @deprecated directive in GraphQL?​
 



 

○​ The @deprecated directive is used to mark a field or an 
argument as deprecated in the GraphQL schema, informing 
consumers of the API that it will be removed in the future.​
 

15.​ What is a List Type in GraphQL?​
 

○​ A list type is an array of items of a specified type. For example, 
[String] represents a list of strings.​
 

16.​ How do you handle errors in GraphQL?​
 

○​ Errors are returned in the errors field of the response, with 
details about what went wrong, while the data field may contain 
partial results.​
 

17.​ What is the difference between Query and Mutation in 
GraphQL?​
 

○​ A Query is used to fetch data, while a Mutation is used to 
modify data.​
 

18.​ What is the purpose of the @include directive in GraphQL?​
 

○​ The @include directive allows you to conditionally include fields 
in a query based on a boolean value.​
 

19.​ What is the purpose of the @skip directive in GraphQL?​
 

○​ The @skip directive allows you to conditionally skip fields in a 
query based on a boolean value.​
 

20.​ How does pagination work in GraphQL?​
 

○​ Pagination in GraphQL is often handled by returning a subset of 
data (e.g., using first, last, before, after) along with a 
cursor to indicate the next set of results.​
 

21.​ What is a GraphQL Schema Definition Language (SDL)?​
 



 

○​ SDL is a syntax used to define GraphQL schemas in a declarative 
way. It allows developers to define types, queries, mutations, and 
subscriptions.​
 

22.​ Can you have multiple queries in a single request?​
 

○​ Yes, GraphQL allows multiple queries to be sent in a single 
request, and each query can be named to differentiate them.​
 

23.​ What is a Fragment in GraphQL?​
 

○​ A fragment is a reusable unit of a query that allows you to define 
a part of a query and reuse it in different places.​
 

24.​ What is a GraphQL Client?​
 

○​ A GraphQL client is a tool or library used to interact with a 
GraphQL server, such as Apollo Client or Relay.​
 

25.​ What is the ID type in GraphQL?​
 

○​ The ID type is a special scalar type in GraphQL used to 
represent unique identifiers.​
 

Intermediate Questions (26-50) 

26.​ What are the advantages of using GraphQL over REST?​
 

○​ GraphQL reduces over-fetching and under-fetching of data, 
provides a single endpoint, and allows clients to specify exactly 
what data they need.​
 

27.​ How do you implement authentication in GraphQL?​
 

○​ Authentication is often handled via middleware, where the server 
checks for a valid token in the request headers before resolving 
the GraphQL query.​
 



 

28.​ What are the common design patterns in GraphQL?​
 

○​ Common patterns include query batching, pagination, 
connection-based pagination, error handling, and authorization 
mechanisms.​
 

29.​ What are the differences between Query and Subscription?​
 

○​ Query is used to fetch data, while Subscription is used for 
real-time updates from the server.​
 

30.​ How do you handle CORS in GraphQL?​
 

○​ CORS is handled at the server level, where the server specifies 
which domains are allowed to access the GraphQL endpoint.​
 

31.​ What is Apollo Client?​
 

○​ Apollo Client is a popular JavaScript library used to interact with 
GraphQL APIs. It simplifies data fetching, caching, and managing 
state.​
 

32.​ How do you handle batching in GraphQL?​
 

○​ Batching in GraphQL allows you to send multiple queries in one 
request, which reduces the number of network requests.​
 

33.​ How does GraphQL handle nested data?​
 

○​ GraphQL supports nested queries, where you can request deeply 
nested data by specifying multiple levels of fields in a single 
query.​
 

34.​ What are Connection and Edge in GraphQL?​
 

○​ Connections represent paginated data, and edges contain nodes 
(the actual data). These structures help in implementing 
pagination with Relay.​
 



 

35.​ What is the @deprecated directive used for?​
 

○​ The @deprecated directive is used to mark a field or enum 
value as deprecated, signaling that it will be removed in the 
future.​
 

36.​ What are GraphQL resolvers and how do they work?​
 

○​ Resolvers are functions that map fields in the schema to data 
sources, like databases, and resolve the values of those fields.​
 

37.​ What is a DataLoader in GraphQL?​
 

○​ DataLoader is a utility to optimize data fetching by batching 
requests and caching results to avoid unnecessary database 
calls.​
 

38.​ What is the difference between @include and @skip in 
GraphQL?​
 

○​ @include is used to conditionally include a field, while @skip is 
used to conditionally exclude a field.​
 

39.​ What is Relay in GraphQL?​
 

○​ Relay is a JavaScript framework for building data-driven React 
applications with GraphQL, focusing on efficient data fetching and 
management.​
 

40.​ How do you handle file uploads in GraphQL?​
 

○​ File uploads in GraphQL can be handled using the 
graphql-upload package, which allows for multipart requests 
to send files along with GraphQL queries.​
 

41.​ What is a Union type in GraphQL?​
 



 

○​ A Union type allows a field to return different types of objects, 
making the schema flexible for multiple types of responses.​
 

42.​ What is a Mutation’s return type in GraphQL?​
 

○​ The return type of a mutation is typically a single object, which 
can be the modified data or any other data related to the 
mutation.​
 

43.​ What are some tools for testing GraphQL APIs?​
 

○​ Tools like Apollo Client, Postman, GraphiQL, and Insomnia can 
be used for testing GraphQL queries and mutations.​
 

44.​ How do you implement pagination in GraphQL?​
 

○​ Pagination is often implemented using a cursor-based system, 
returning results in pages and including a cursor to indicate the 
position of the next set of data.​
 

45.​ What is GraphQL introspection and how does it help 
developers?​
 

○​ Introspection allows developers to query the GraphQL schema 
itself to understand the types, queries, mutations, and 
subscriptions available.​
 

46.​ How do you prevent over-fetching in GraphQL?​
 

○​ Clients should request only the data they need. GraphQL's 
flexibility allows clients to specify the exact data, reducing 
over-fetching.​
 

47.​ What is Apollo Server?​
 

○​ Apollo Server is a library that helps you build a GraphQL API by 
providing a simple setup for the server, resolvers, and schemas.​
 

48.​ How does Apollo Client manage local state?​
 



 

○​ Apollo Client can manage both remote and local state, using its 
cache to store local data and combining it with server-side data.​
 

49.​ How can you handle authorization in GraphQL?​
 

○​ Authorization is handled by adding authentication middleware to 
the GraphQL server, where you check if the user has the proper 
permissions to access data.​
 

50.​ What is GraphQL over HTTP?​
 

○​ GraphQL is typically served over HTTP, where POST requests 
are used to send queries and mutations to the server.​
 

Advanced Questions (51-75) 

51.​ How does GraphQL handle caching?​
 

○​ Caching in GraphQL is usually handled at the client or server 
level, often using libraries like Apollo Client’s cache or custom 
cache implementations.​
 

52.​ What are the common performance bottlenecks in GraphQL?​
 

○​ N+1 queries, large payloads, and inefficient resolvers can lead to 
performance bottlenecks in GraphQL.​
 

53.​ How can you optimize GraphQL queries?​
 

○​ Optimizations include batching queries, using fragments to avoid 
repetition, and caching responses to reduce the number of server 
requests.​
 

54.​ How do you implement authorization in GraphQL?​
 

○​ Authorization can be handled in the resolver level or middleware, 
where permissions are checked before resolving a query.​
 

55.​ What is a Batch Query in GraphQL?​
 



 

○​ A batch query allows multiple queries to be sent in one HTTP 
request, reducing the number of HTTP calls required.​
 

56.​ How can you avoid the N+1 problem in GraphQL?​
 

○​ The N+1 problem can be avoided by batching database queries, 
using a tool like DataLoader to cache results and avoid redundant 
fetches.​
 

57.​ What is Schema Stitching in GraphQL?​
 

○​ Schema stitching is a technique used to combine multiple 
GraphQL schemas into a single schema, allowing you to merge 
APIs from different sources.​
 

58.​ How do you handle rate-limiting in GraphQL?​
 

○​ Rate limiting can be handled at the server level by checking the 
number of requests per user and limiting excessive API calls.​
 

59.​ What is Apollo Federation?​
 

○​ Apollo Federation is a method for building a distributed GraphQL 
architecture by combining multiple GraphQL services into a single 
data graph.​
 

60.​ What are the benefits of using GraphQL subscriptions?​
 

○​ Subscriptions provide real-time data updates to clients, enabling 
use cases like live chat, notifications, or any real-time updates.​
 

61.​ How do you test resolvers in GraphQL?​
 

○​ Resolvers can be tested using mock data and calling the resolver 
functions directly, or using testing frameworks like Jest.​
 

62.​ What is a GraphQL Data Source?​
 



 

○​ A data source is a method or class that abstracts fetching data 
from a particular API or database. It's often used in Apollo Server.​
 

63.​ How can you prevent abusive queries in GraphQL?​
 

○​ Abusive queries can be prevented by limiting query depth, using 
query complexity analysis, or rate-limiting the number of requests 
a user can make.​
 

64.​ How do you handle GraphQL query complexity?​
 

○​ Query complexity can be managed by setting depth limits, 
calculating query cost, and rejecting overly complex queries.​
 

65.​ What is GraphQL Persisted Queries?​
 

○​ Persisted queries are pre-saved GraphQL queries that can be 
referenced by their unique identifier, reducing the need to send 
full query strings.​
 

66.​ How do you handle errors in GraphQL efficiently?​
 

○​ Errors are returned in a standard errors array, but you can also 
implement custom error handling by adding detailed error codes 
or messages.​
 

67.​ What are the best practices for organizing a GraphQL schema?​
 

○​ Best practices include modularizing the schema into different 
files, keeping it DRY, and using types and resolvers that follow a 
consistent naming convention.​
 

68.​ What are GraphQL directives, and how do you use them?​
 

○​ Directives like @include, @skip, and @deprecated are used 
to modify the execution behavior of GraphQL operations.​
 

69.​ What is GraphQL Query Batching?​
 



 

○​ Query batching is the ability to send multiple GraphQL queries in 
a single request, improving efficiency and reducing the number of 
HTTP requests.​
 

70.​ How does Apollo Client handle caching and state management?​
 

○​ Apollo Client automatically caches query results and uses a 
normalized cache to manage client-side state and re-fetch data 
only when necessary.​
 

71.​ What is a Resolver Pipeline in GraphQL?​
 

○​ A resolver pipeline refers to the series of steps that data goes 
through when a resolver is executed, including validation, 
fetching, and transformation.​
 

72.​ What is GraphQL Query Optimization?​
 

○​ Query optimization involves strategies like reducing nested 
queries, using fragments, and minimizing the data returned by 
avoiding unnecessary fields.​
 

73.​ How do you secure a GraphQL API?​
 

○​ You can secure a GraphQL API using authentication tokens, 
role-based access control, and applying security practices like 
query depth limiting.​
 

74.​ What is the GraphQL Query Complexity analysis?​
 

○​ Query complexity analysis assigns a "cost" to each query and 
limits the total allowed complexity, preventing overly expensive 
queries from being run.​
 

75.​ What are GraphQL Best Practices?​
 

○​ Best practices include using a single GraphQL endpoint, 
implementing caching, validating queries, handling errors 
consistently, and securing the API with proper authentication.​
 



 

Technical Questions (76-100) 

76.​ How does Apollo Server handle multiple resolvers?​
 

○​ Apollo Server allows defining multiple resolvers and organizes 
them into a single schema, which can then be processed by the 
server to resolve queries.​
 

77.​ What is the difference between @include and @skip 
directives?​
 

○​ @include includes a field based on a condition, while @skip 
excludes it based on a condition.​
 

78.​ How do you implement caching in GraphQL?​
 

○​ Caching in GraphQL can be handled by using caching 
mechanisms in the client or server, such as Apollo Client’s cache 
or Redis for the server.​
 

79.​ How does GraphQL handle batch queries?​
 

○​ Batch queries allow multiple queries to be sent in one HTTP 
request, reducing the number of network calls and improving 
performance.​
 

80.​ How do you handle GraphQL subscriptions for real-time 
updates?​
 

○​ Subscriptions in GraphQL are implemented with WebSockets or 
other real-time protocols, allowing clients to subscribe to data 
updates.​
 

81.​ What is Apollo Federation, and how does it work?​
 

○​ Apollo Federation is a method for building a distributed GraphQL 
architecture by splitting the schema into different services 
(microservices) that can be combined.​
 



 

82.​ How do you secure a GraphQL endpoint?​
 

○​ Securing a GraphQL endpoint can be achieved by using 
authentication tokens (JWTs), rate-limiting requests, and using 
role-based access control.​
 

83.​ What is the role of a Schema Definition Language (SDL) in 
GraphQL?​
 

○​ SDL allows you to define your schema in a declarative syntax, 
describing types, queries, mutations, and subscriptions.​
 

84.​ How does the N+1 query problem affect GraphQL performance?​
 

○​ The N+1 problem occurs when multiple database queries are 
made to fetch related data, leading to performance bottlenecks. It 
can be mitigated using tools like DataLoader.​
 

85.​ How do you deal with circular dependencies in GraphQL 
schemas?​
 

○​ Circular dependencies can be managed by breaking down the 
schema into smaller parts and carefully managing type 
references.​
 

86.​ How can you implement query depth limits in GraphQL?​
 

○​ Query depth limits can be implemented by analyzing the query’s 
complexity and rejecting queries that exceed a specified depth.​
 

87.​ What is GraphQL Schema Stitching?​
 

○​ Schema stitching allows you to combine multiple GraphQL 
schemas into one, creating a unified data graph from multiple 
services.​
 

88.​ How do you ensure consistent error handling in GraphQL?​
 

○​ Consistent error handling can be achieved by defining custom 
error messages, using error codes, and maintaining a standard 



 

structure for error responses.​
 

89.​ What is the best way to handle real-time data with GraphQL?​
 

○​ Real-time data can be handled with GraphQL subscriptions, 
allowing clients to listen for updates via WebSockets or similar 
technologies.​
 

90.​ How does Apollo Client handle optimistic UI?​
 

○​ Apollo Client can handle optimistic UI by predicting the result of a 
mutation and updating the local cache immediately while waiting 
for the server response.​
 

91.​ How do you handle large payloads in GraphQL?​
 

○​ Large payloads can be managed by paginating data, using 
batching, and implementing proper caching strategies to reduce 
the load on the server.​
 

92.​ What is a DataLoader, and how is it used in GraphQL?​
 

○​ DataLoader is a utility that batches and caches database 
requests, helping to avoid the N+1 query problem in GraphQL 
resolvers.​
 

93.​ How does Apollo Server resolve conflicts between different 
schema files?​
 

○​ Apollo Server resolves conflicts by merging multiple schema files 
into a single schema using the mergeSchemas utility.​
 

94.​ How do you manage cross-origin requests in GraphQL?​
 

○​ Cross-origin requests (CORS) can be managed by setting 
appropriate headers in the GraphQL server to allow requests from 
specific origins.​
 

95.​ What is a persistent query, and why is it useful in GraphQL?​
 



 

○​ Persistent queries allow the server to store queries with unique 
IDs and reference them instead of sending full queries, improving 
performance and security.​
 

96.​ How do you handle rate-limiting in GraphQL?​
 

○​ Rate-limiting can be implemented using middleware or API 
gateways to limit the number of requests a user can make in a 
given time frame.​
 

97.​ What are the benefits of using Apollo Client for GraphQL?​
 

●​ Apollo Client provides caching, query batching, local state 
management, and easy integration with React or other frameworks.​
 

98.​ How does GraphQL handle query complexity?​
 

○​ GraphQL can analyze query complexity by calculating the cost of 
each field and rejecting queries that exceed a predefined 
complexity threshold.​
 

99.​ What is the best way to structure a large GraphQL schema?​
 

○​ Large schemas should be modularized into different files, 
grouping related types, queries, and mutations into separate 
modules for easier maintenance.​
 

100.​ What are the most common GraphQL security vulnerabilities? - 
Common vulnerabilities include insecure direct object references 
(IDOR), excessive data exposure, and denial of service (DoS) via 
complex queries. Preventative measures include using authentication, 
query depth limits, and rate-limiting.​
 

 


	Basic Questions (1-25) 
	Intermediate Questions (26-50) 
	Advanced Questions (51-75) 
	Technical Questions (76-100) 

