
 

Kotlin 

Basic Kotlin Interview Questions (1-25) 

1. What is Kotlin? 
 

○ Kotlin is a statically typed programming language that runs on the 
Java Virtual Machine (JVM). It is fully interoperable with Java and 
is designed to be more concise and expressive. 
 

2. What are the advantages of Kotlin over Java? 
 

○ Kotlin offers concise syntax, null safety, extension functions, 
smart casts, coroutines for asynchronous programming, and 
better support for functional programming. 
 

3. What is the difference between val and var in Kotlin? 
 

○ val is used for immutable references (like final in Java), while 
var is used for mutable references. 
 

4. What is the fun keyword in Kotlin? 
 

○ The fun keyword is used to declare a function in Kotlin. 
 

5. What are data classes in Kotlin? 
 

○ Data classes are classes that are used to hold data. They 
automatically generate functions like toString(), equals(), 
and hashCode(). 
 

6. What is null safety in Kotlin? 
 

○ Null safety in Kotlin prevents null pointer exceptions by 
distinguishing between nullable and non-nullable types. 
 

7. What is a companion object in Kotlin? 
 



 

○ A companion object is an object declared inside a class, which is 
used to hold static-like members in Kotlin. 
 

8. Explain the concept of extension functions in Kotlin. 
 

○ Extension functions allow adding functionality to existing classes 
without modifying their source code. 
 

9. What is the difference between == and === in Kotlin? 
 

○ == checks for value equality (similar to equals()), while === 
checks for reference equality (i.e., whether two references point 
to the same object). 
 

10. What are lateinit and lazy in Kotlin? 
 

● lateinit is used to initialize a variable later, while lazy is used for 
lazy initialization of a value. 
 

11. What are the different types of variables in Kotlin? 
 

● Variables in Kotlin can be of types val (immutable) or var (mutable). 
 

12. What is a primary constructor in Kotlin? 
 

● A primary constructor is a part of the class declaration and can be used 
to initialize the properties of a class. 
 

13. What is a secondary constructor in Kotlin? 
 

● A secondary constructor is a constructor that is not part of the class 
declaration and is used to provide additional ways to initialize the class. 
 

14. How do you handle exceptions in Kotlin? 
 

● Exceptions are handled using try, catch, and finally blocks in 
Kotlin, similar to Java. 
 



 

15. What is the difference between a class and an object in Kotlin? 
 

● A class is a blueprint for creating objects, while an object is an instance 
of a class. 
 

16. What is the difference between Array and List in Kotlin? 
 

● Array is a fixed-size collection that can hold elements of any type, 
while List is a read-only collection that can hold a dynamic number of 
elements. 
 

17. What are coroutines in Kotlin? 
 

● Coroutines are a way of handling asynchronous programming and 
background tasks in Kotlin, allowing you to write asynchronous code in 
a sequential manner. 
 

18. What is the difference between is and as in Kotlin? 
 

● is is used to check the type of a variable, while as is used for casting a 
variable to a specific type. 
 

19. Explain the when expression in Kotlin. 
 

● The when expression is similar to switch in other languages and is 
used for branching based on a condition or value. 
 

20. What is the purpose of in keyword in Kotlin? 
 

● The in keyword is used for checking if a value is within a range or for 
iterating over collections. 
 

21. What are sealed classes in Kotlin? 
 

● Sealed classes restrict class hierarchies to a limited set of subclasses, 
providing more control over inheritance. 
 

22. How do you define default parameter values in Kotlin? 
 



 

● You can define default values for function parameters in Kotlin by 
specifying them in the function signature. 
 

23. What is the purpose of the apply function in Kotlin? 
 

● The apply function is used for configuring objects, executing multiple 
operations on an object in a block, and returning the object itself. 
 

24. What is the with function in Kotlin? 
 

● The with function allows you to execute a block of code on an object 
without having to refer to the object explicitly every time. 
 

25. What is the difference between StringBuilder and 
StringBuffer in Kotlin? 
 

● StringBuilder is used for mutable strings in single-threaded 
contexts, while StringBuffer is used in multi-threaded contexts. 
 

 

Intermediate Kotlin Interview Questions (26-50) 

26. What are higher-order functions in Kotlin? 
 

● Higher-order functions are functions that take other functions as 
parameters or return functions. 
 

27. What are lambda expressions in Kotlin? 
 

● Lambda expressions are anonymous functions that can be passed 
around as values. 
 

28. What is the purpose of inline functions in Kotlin? 
 

● The inline keyword is used to reduce the overhead of lambda 
expressions by inserting the function body directly into the calling 
function. 
 



 

29. What is a generic class in Kotlin? 
 

● A generic class in Kotlin allows you to define classes, interfaces, and 
functions that work with any type. 
 

30. What is the out keyword in Kotlin? 
 

● The out keyword is used for covariance, allowing you to return a 
subtype of a specified type. 
 

31. What is the in keyword in Kotlin? 
 

● The in keyword is used for contravariance, allowing you to pass a 
supertype of a specified type. 
 

32. What is an interface in Kotlin? 
 

● An interface in Kotlin is a contract that classes can implement. It can 
contain abstract methods as well as default method implementations. 
 

33. How does Kotlin handle null references? 
 

● Kotlin uses nullable types (Type?) and null safety features to prevent 
null pointer exceptions. 
 

34. What is the purpose of the @JvmStatic annotation in Kotlin? 
 

● The @JvmStatic annotation is used to mark a method as static when 
generating Java bytecode, allowing it to be accessed without an 
instance of the class. 
 

35. What are extension properties in Kotlin? 
 

● Extension properties allow you to add properties to existing classes 
without modifying their source code. 
 

36. What is destructuring declaration in Kotlin? 
 



 

● Destructuring declaration allows you to unpack a data class into 
separate variables. 
 

37. What are the different types of collections in Kotlin? 
 

● Kotlin provides List, Set, and Map collections, each of which can be 
mutable or immutable. 
 

38. What is the lazy initialization in Kotlin? 
 

● lazy initialization is a way to initialize a variable only when it is first 
accessed. 
 

39. What are the benefits of using sealed classes? 
 

● Sealed classes allow you to define a limited set of subclasses, making it 
easier to handle exhaustive when expressions. 
 

40. How does run function work in Kotlin? 
 

● The run function is used for executing a block of code and returning the 
result of the last expression in that block. 
 

41. What are try-catch-finally blocks used for in Kotlin? 
 

● These blocks are used to handle exceptions in a structured way, where 
finally executes regardless of whether an exception is thrown or not. 
 

42. What is apply vs also in Kotlin? 
 

● Both apply and also are used for performing operations on an object, 
but apply returns the object itself, while also returns the result of the 
lambda. 
 

43. What is reified in Kotlin? 
 



 

● The reified keyword is used in inline functions to access the actual 
type of a generic type parameter. 
 

44. How does Kotlin handle multiple inheritance? 
 

● Kotlin allows multiple inheritance through interfaces, but only single 
inheritance for classes. 
 

45. What is the purpose of the override keyword in Kotlin? 
 

● The override keyword is used to indicate that a function or property in 
a subclass is overriding a function or property in a superclass. 
 

46. What is sealed interface in Kotlin? 
 

● A sealed interface is an interface that restricts its implementation 
to a limited set of types, similar to sealed classes. 
 

47. How does ArrayList work in Kotlin? 
 

● ArrayList in Kotlin is a resizable array-backed collection, part of the 
MutableList interface. 
 

48. What is the difference between set and list in Kotlin? 
 

● A set is a collection of unique elements, while a list is an ordered 
collection that may contain duplicates. 
 

49. How do you handle concurrency in Kotlin? 
 

● Kotlin provides coroutines for handling concurrency and asynchronous 
tasks in a more lightweight and efficient way. 
 

50. What are reified type parameters in Kotlin? 
 

● reified type parameters are used in inline functions to preserve type 
information for generics. 
 



 

 

Advanced Kotlin Interview Questions (51-75) 

51. How do coroutines work in Kotlin? 
 

● Coroutines are lightweight threads that allow asynchronous and 
non-blocking code execution, simplifying concurrency. 
 

52. What is a CoroutineScope in Kotlin? 
 

● A CoroutineScope is used to manage and control the lifecycle of 
coroutines, ensuring that they are cancelled when no longer needed. 
 

53. What is a Channel in Kotlin coroutines? 
 

● A Channel is a way of communicating between coroutines, providing a 
safe way to send and receive data. 
 

54. What is the suspend keyword in Kotlin? 
 

● The suspend keyword is used to mark a function that can be paused 
and resumed without blocking the thread. 
 

55. What is CoroutineDispatcher in Kotlin? 
 

● CoroutineDispatcher is used to control the thread or thread pool on 
which a coroutine runs. 
 

56. What is Flow in Kotlin? 
 

● Flow is an asynchronous stream of values that can be collected and 
processed in a non-blocking manner. 
 

57. What is the difference between launch and async in Kotlin 
coroutines? 
 



 

● launch is used for launching a coroutine without returning a result, 
while async is used for launching a coroutine that returns a result. 
 

58. What is withContext in Kotlin coroutines? 
 

● withContext is used to change the context (thread) of a coroutine, 
typically used for switching between different dispatchers. 
 

59. Explain the concept of actor in Kotlin. 
 

● An actor is a special type of coroutine used for managing state in a 
concurrent manner. 
 

60. What is the purpose of Job in Kotlin coroutines? 
 

● Job is used to manage the lifecycle of a coroutine and can be cancelled 
when necessary. 
 

61. What are suspend functions and how are they used in Kotlin? 
 

● suspend functions are special functions that can be suspended during 
their execution and resumed later, making them suitable for 
asynchronous operations. 
 

62. How do you handle exceptions in Kotlin coroutines? 
 

● Exceptions in coroutines are handled by using try-catch blocks or 
using structured concurrency principles with supervisorScope. 
 

63. What is CoroutineExceptionHandler in Kotlin? 
 

● CoroutineExceptionHandler is used to handle uncaught 
exceptions in coroutines. 
 

64. What is the GlobalScope in Kotlin? 
 



 

● GlobalScope is a global singleton scope for launching top-level 
coroutines that are not bound to any specific lifecycle. 
 

65. What is runBlocking in Kotlin coroutines? 
 

● runBlocking is used to start a coroutine in the main thread, blocking 
the thread until the coroutine completes. 
 

66. How does Kotlin handle memory management? 
 

● Kotlin relies on the JVM's garbage collection system for memory 
management, but it also has its own memory optimizations for handling 
null safety and object lifecycles. 
 

67. What is Kotlin Native? 
 

● Kotlin Native is a technology that compiles Kotlin code to native 
binaries, enabling Kotlin to be used for developing applications for 
platforms like iOS and embedded systems. 
 

68. What is the @Inject annotation in Kotlin? 
 

● The @Inject annotation is used for dependency injection in Kotlin, 
typically with frameworks like Dagger or Koin. 
 

69. What is Kotlin Multiplatform? 
 

● Kotlin Multiplatform allows you to write code that can run on multiple 
platforms (Android, iOS, JVM, JS) without rewriting the logic for each 
platform. 
 

70. How do you perform testing in Kotlin? 
 

● Kotlin supports testing using libraries like JUnit, TestNG, and others, 
and can be used in combination with mocking libraries like Mockito. 
 

71. What are the pros and cons of using Kotlin over Java? 
 



 

● Pros include null safety, concise syntax, and enhanced functionality. 
Cons include learning curve and sometimes larger binary size. 
 

72. What is Kotlin DSL? 
 

● Kotlin DSL (Domain Specific Language) allows you to create expressive 
and domain-specific languages using Kotlin. 
 

73. What is the difference between apply and also in Kotlin? 
 

● Both apply and also are used for operations on an object, but apply 
returns the object itself, while also returns the result of the lambda. 
 

74. How do you manage concurrency using Kotlin? 
 

● You can manage concurrency using Kotlin coroutines and related 
constructs like Channel, Flow, and Job. 
 

75. Explain the concept of Inline functions in Kotlin. 
 

● inline functions are used to avoid the overhead of lambda 
expressions by inlining the code of the lambda at the call site. 
 

 

Technical Kotlin Interview Questions (76-100) 

76. How does Kotlin interact with Java? 
 

● Kotlin is fully interoperable with Java, meaning that Kotlin code can call 
Java classes and vice versa. 
 

77. What is annotation class in Kotlin? 
 

● annotation class is used to define annotations, which are metadata 
for code that can be accessed during runtime. 
 

78. How do you convert a String to Int in Kotlin? 
 



 

● Use toInt() to convert a String to an Int, or toIntOrNull() to 
avoid exceptions if the string is not a valid number. 
 

79. Explain the Array functions in Kotlin. 
 

● Kotlin provides various functions to manipulate arrays, like map(), 
filter(), forEach(), etc. 
 

80. What is the role of object in Kotlin? 
 

● The object keyword is used to define a singleton, an anonymous 
class, or a companion object. 
 

81. How do you define a custom exception in Kotlin? 
 

● Custom exceptions in Kotlin are defined by inheriting from Exception 
or any subclass of it. 
 

82. What is super used for in Kotlin? 
 

● super is used to access members (methods or properties) of a 
superclass. 
 

83. What is a map in Kotlin? 
 

● A map is a collection that holds key-value pairs, where each key maps 
to exactly one value. 
 

84. How do you access Java classes from Kotlin? 
 

● Kotlin allows direct access to Java classes without requiring additional 
syntax, thanks to its interoperability with Java. 
 

85. What are when expressions used for in Kotlin? 
 

● when expressions are used for branching based on different conditions, 
similar to a switch statement in other languages. 
 



 

86. What is with function in Kotlin? 
 

● with is a scoping function used to operate on an object within a block 
of code. 
 

87. What is takeIf in Kotlin? 
 

● takeIf is used to return the object if it satisfies a condition, or null 
otherwise. 
 

88. How do you use for loops in Kotlin? 
 

● Kotlin provides traditional for loops and enhanced forEach methods 
for iterating over collections. 
 

89. What is uninitialized in Kotlin? 
 

● Uninitialized properties are declared but not yet assigned a value. Using 
them can lead to errors unless handled properly. 
 

90. What is class delegation in Kotlin? 
 

● Class delegation is a mechanism in Kotlin where a class delegates the 
implementation of some methods to another class. 
 

91. What is Kotlin Reflection? 
 

● Kotlin Reflection is a feature that allows the inspection of classes, 
functions, and properties at runtime. 
 

92. Explain the delegates in Kotlin. 
 

● delegates in Kotlin are used to delegate the implementation of 
properties to another object. 
 

93. What is @JvmOverloads in Kotlin? 
 



 

● The @JvmOverloads annotation generates overloaded methods with 
default values to make Kotlin code compatible with Java. 
 

94. What is CoroutineScope in Kotlin? 
 

● CoroutineScope defines the context in which coroutines are launched 
and their lifecycle. 
 

95. How do you handle background tasks in Kotlin? 
 

● Background tasks can be handled using coroutines for non-blocking 
execution. 
 

96. What is lambda with receiver in Kotlin? 
 

● A lambda with receiver is a lambda that can access members of the 
receiver object directly. 
 

97. What is runBlocking used for in Kotlin? 
 

● runBlocking is used to start a coroutine in the main thread and block 
until it completes. 
 

98. Explain the concept of generics in Kotlin. 
 

● Generics allow classes and functions to work with any type, increasing 
code reusability and safety. 
 

99. What is @JvmName annotation used for in Kotlin? 
 

● @JvmName allows renaming a function when it is compiled to JVM 
bytecode, ensuring compatibility with Java. 
 

100. How do you declare a singleton in Kotlin? 
 

● A singleton in Kotlin is declared using the object keyword, which 
creates a single instance of a class. 
 



 

 


	Basic Kotlin Interview Questions (1-25) 
	Intermediate Kotlin Interview Questions (26-50) 
	Advanced Kotlin Interview Questions (51-75) 
	Technical Kotlin Interview Questions (76-100) 

