
 

Kotlin 

Basic Kotlin Interview Questions (1-25) 

1.​ What is Kotlin?​
 

○​ Kotlin is a statically typed programming language that runs on the 
Java Virtual Machine (JVM). It is fully interoperable with Java and 
is designed to be more concise and expressive.​
 

2.​ What are the advantages of Kotlin over Java?​
 

○​ Kotlin offers concise syntax, null safety, extension functions, 
smart casts, coroutines for asynchronous programming, and 
better support for functional programming.​
 

3.​ What is the difference between val and var in Kotlin?​
 

○​ val is used for immutable references (like final in Java), while 
var is used for mutable references.​
 

4.​ What is the fun keyword in Kotlin?​
 

○​ The fun keyword is used to declare a function in Kotlin.​
 

5.​ What are data classes in Kotlin?​
 

○​ Data classes are classes that are used to hold data. They 
automatically generate functions like toString(), equals(), 
and hashCode().​
 

6.​ What is null safety in Kotlin?​
 

○​ Null safety in Kotlin prevents null pointer exceptions by 
distinguishing between nullable and non-nullable types.​
 

7.​ What is a companion object in Kotlin?​
 



 

○​ A companion object is an object declared inside a class, which is 
used to hold static-like members in Kotlin.​
 

8.​ Explain the concept of extension functions in Kotlin.​
 

○​ Extension functions allow adding functionality to existing classes 
without modifying their source code.​
 

9.​ What is the difference between == and === in Kotlin?​
 

○​ == checks for value equality (similar to equals()), while === 
checks for reference equality (i.e., whether two references point 
to the same object).​
 

10.​ What are lateinit and lazy in Kotlin?​
 

●​ lateinit is used to initialize a variable later, while lazy is used for 
lazy initialization of a value.​
 

11.​What are the different types of variables in Kotlin?​
 

●​ Variables in Kotlin can be of types val (immutable) or var (mutable).​
 

12.​ What is a primary constructor in Kotlin?​
 

●​ A primary constructor is a part of the class declaration and can be used 
to initialize the properties of a class.​
 

13.​ What is a secondary constructor in Kotlin?​
 

●​ A secondary constructor is a constructor that is not part of the class 
declaration and is used to provide additional ways to initialize the class.​
 

14.​ How do you handle exceptions in Kotlin?​
 

●​ Exceptions are handled using try, catch, and finally blocks in 
Kotlin, similar to Java.​
 



 

15.​ What is the difference between a class and an object in Kotlin?​
 

●​ A class is a blueprint for creating objects, while an object is an instance 
of a class.​
 

16.​ What is the difference between Array and List in Kotlin?​
 

●​ Array is a fixed-size collection that can hold elements of any type, 
while List is a read-only collection that can hold a dynamic number of 
elements.​
 

17.​ What are coroutines in Kotlin?​
 

●​ Coroutines are a way of handling asynchronous programming and 
background tasks in Kotlin, allowing you to write asynchronous code in 
a sequential manner.​
 

18.​ What is the difference between is and as in Kotlin?​
 

●​ is is used to check the type of a variable, while as is used for casting a 
variable to a specific type.​
 

19.​ Explain the when expression in Kotlin.​
 

●​ The when expression is similar to switch in other languages and is 
used for branching based on a condition or value.​
 

20.​ What is the purpose of in keyword in Kotlin?​
 

●​ The in keyword is used for checking if a value is within a range or for 
iterating over collections.​
 

21.​ What are sealed classes in Kotlin?​
 

●​ Sealed classes restrict class hierarchies to a limited set of subclasses, 
providing more control over inheritance.​
 

22.​ How do you define default parameter values in Kotlin?​
 



 

●​ You can define default values for function parameters in Kotlin by 
specifying them in the function signature.​
 

23.​ What is the purpose of the apply function in Kotlin?​
 

●​ The apply function is used for configuring objects, executing multiple 
operations on an object in a block, and returning the object itself.​
 

24.​ What is the with function in Kotlin?​
 

●​ The with function allows you to execute a block of code on an object 
without having to refer to the object explicitly every time.​
 

25.​ What is the difference between StringBuilder and 
StringBuffer in Kotlin?​
 

●​ StringBuilder is used for mutable strings in single-threaded 
contexts, while StringBuffer is used in multi-threaded contexts.​
 

 

Intermediate Kotlin Interview Questions (26-50) 

26.​ What are higher-order functions in Kotlin?​
 

●​ Higher-order functions are functions that take other functions as 
parameters or return functions.​
 

27.​ What are lambda expressions in Kotlin?​
 

●​ Lambda expressions are anonymous functions that can be passed 
around as values.​
 

28.​ What is the purpose of inline functions in Kotlin?​
 

●​ The inline keyword is used to reduce the overhead of lambda 
expressions by inserting the function body directly into the calling 
function.​
 



 

29.​ What is a generic class in Kotlin?​
 

●​ A generic class in Kotlin allows you to define classes, interfaces, and 
functions that work with any type.​
 

30.​ What is the out keyword in Kotlin?​
 

●​ The out keyword is used for covariance, allowing you to return a 
subtype of a specified type.​
 

31.​ What is the in keyword in Kotlin?​
 

●​ The in keyword is used for contravariance, allowing you to pass a 
supertype of a specified type.​
 

32.​ What is an interface in Kotlin?​
 

●​ An interface in Kotlin is a contract that classes can implement. It can 
contain abstract methods as well as default method implementations.​
 

33.​ How does Kotlin handle null references?​
 

●​ Kotlin uses nullable types (Type?) and null safety features to prevent 
null pointer exceptions.​
 

34.​ What is the purpose of the @JvmStatic annotation in Kotlin?​
 

●​ The @JvmStatic annotation is used to mark a method as static when 
generating Java bytecode, allowing it to be accessed without an 
instance of the class.​
 

35.​ What are extension properties in Kotlin?​
 

●​ Extension properties allow you to add properties to existing classes 
without modifying their source code.​
 

36.​ What is destructuring declaration in Kotlin?​
 



 

●​ Destructuring declaration allows you to unpack a data class into 
separate variables.​
 

37.​ What are the different types of collections in Kotlin?​
 

●​ Kotlin provides List, Set, and Map collections, each of which can be 
mutable or immutable.​
 

38.​ What is the lazy initialization in Kotlin?​
 

●​ lazy initialization is a way to initialize a variable only when it is first 
accessed.​
 

39.​ What are the benefits of using sealed classes?​
 

●​ Sealed classes allow you to define a limited set of subclasses, making it 
easier to handle exhaustive when expressions.​
 

40.​ How does run function work in Kotlin?​
 

●​ The run function is used for executing a block of code and returning the 
result of the last expression in that block.​
 

41.​ What are try-catch-finally blocks used for in Kotlin?​
 

●​ These blocks are used to handle exceptions in a structured way, where 
finally executes regardless of whether an exception is thrown or not.​
 

42.​ What is apply vs also in Kotlin?​
 

●​ Both apply and also are used for performing operations on an object, 
but apply returns the object itself, while also returns the result of the 
lambda.​
 

43.​ What is reified in Kotlin?​
 



 

●​ The reified keyword is used in inline functions to access the actual 
type of a generic type parameter.​
 

44.​ How does Kotlin handle multiple inheritance?​
 

●​ Kotlin allows multiple inheritance through interfaces, but only single 
inheritance for classes.​
 

45.​ What is the purpose of the override keyword in Kotlin?​
 

●​ The override keyword is used to indicate that a function or property in 
a subclass is overriding a function or property in a superclass.​
 

46.​ What is sealed interface in Kotlin?​
 

●​ A sealed interface is an interface that restricts its implementation 
to a limited set of types, similar to sealed classes.​
 

47.​ How does ArrayList work in Kotlin?​
 

●​ ArrayList in Kotlin is a resizable array-backed collection, part of the 
MutableList interface.​
 

48.​ What is the difference between set and list in Kotlin?​
 

●​ A set is a collection of unique elements, while a list is an ordered 
collection that may contain duplicates.​
 

49.​ How do you handle concurrency in Kotlin?​
 

●​ Kotlin provides coroutines for handling concurrency and asynchronous 
tasks in a more lightweight and efficient way.​
 

50.​ What are reified type parameters in Kotlin?​
 

●​ reified type parameters are used in inline functions to preserve type 
information for generics.​
 



 

 

Advanced Kotlin Interview Questions (51-75) 

51.​ How do coroutines work in Kotlin?​
 

●​ Coroutines are lightweight threads that allow asynchronous and 
non-blocking code execution, simplifying concurrency.​
 

52.​ What is a CoroutineScope in Kotlin?​
 

●​ A CoroutineScope is used to manage and control the lifecycle of 
coroutines, ensuring that they are cancelled when no longer needed.​
 

53.​ What is a Channel in Kotlin coroutines?​
 

●​ A Channel is a way of communicating between coroutines, providing a 
safe way to send and receive data.​
 

54.​ What is the suspend keyword in Kotlin?​
 

●​ The suspend keyword is used to mark a function that can be paused 
and resumed without blocking the thread.​
 

55.​ What is CoroutineDispatcher in Kotlin?​
 

●​ CoroutineDispatcher is used to control the thread or thread pool on 
which a coroutine runs.​
 

56.​ What is Flow in Kotlin?​
 

●​ Flow is an asynchronous stream of values that can be collected and 
processed in a non-blocking manner.​
 

57.​ What is the difference between launch and async in Kotlin 
coroutines?​
 



 

●​ launch is used for launching a coroutine without returning a result, 
while async is used for launching a coroutine that returns a result.​
 

58.​ What is withContext in Kotlin coroutines?​
 

●​ withContext is used to change the context (thread) of a coroutine, 
typically used for switching between different dispatchers.​
 

59.​ Explain the concept of actor in Kotlin.​
 

●​ An actor is a special type of coroutine used for managing state in a 
concurrent manner.​
 

60.​ What is the purpose of Job in Kotlin coroutines?​
 

●​ Job is used to manage the lifecycle of a coroutine and can be cancelled 
when necessary.​
 

61.​ What are suspend functions and how are they used in Kotlin?​
 

●​ suspend functions are special functions that can be suspended during 
their execution and resumed later, making them suitable for 
asynchronous operations.​
 

62.​ How do you handle exceptions in Kotlin coroutines?​
 

●​ Exceptions in coroutines are handled by using try-catch blocks or 
using structured concurrency principles with supervisorScope.​
 

63.​ What is CoroutineExceptionHandler in Kotlin?​
 

●​ CoroutineExceptionHandler is used to handle uncaught 
exceptions in coroutines.​
 

64.​ What is the GlobalScope in Kotlin?​
 



 

●​ GlobalScope is a global singleton scope for launching top-level 
coroutines that are not bound to any specific lifecycle.​
 

65.​ What is runBlocking in Kotlin coroutines?​
 

●​ runBlocking is used to start a coroutine in the main thread, blocking 
the thread until the coroutine completes.​
 

66.​ How does Kotlin handle memory management?​
 

●​ Kotlin relies on the JVM's garbage collection system for memory 
management, but it also has its own memory optimizations for handling 
null safety and object lifecycles.​
 

67.​ What is Kotlin Native?​
 

●​ Kotlin Native is a technology that compiles Kotlin code to native 
binaries, enabling Kotlin to be used for developing applications for 
platforms like iOS and embedded systems.​
 

68.​ What is the @Inject annotation in Kotlin?​
 

●​ The @Inject annotation is used for dependency injection in Kotlin, 
typically with frameworks like Dagger or Koin.​
 

69.​ What is Kotlin Multiplatform?​
 

●​ Kotlin Multiplatform allows you to write code that can run on multiple 
platforms (Android, iOS, JVM, JS) without rewriting the logic for each 
platform.​
 

70.​ How do you perform testing in Kotlin?​
 

●​ Kotlin supports testing using libraries like JUnit, TestNG, and others, 
and can be used in combination with mocking libraries like Mockito.​
 

71.​ What are the pros and cons of using Kotlin over Java?​
 



 

●​ Pros include null safety, concise syntax, and enhanced functionality. 
Cons include learning curve and sometimes larger binary size.​
 

72.​ What is Kotlin DSL?​
 

●​ Kotlin DSL (Domain Specific Language) allows you to create expressive 
and domain-specific languages using Kotlin.​
 

73.​ What is the difference between apply and also in Kotlin?​
 

●​ Both apply and also are used for operations on an object, but apply 
returns the object itself, while also returns the result of the lambda.​
 

74.​ How do you manage concurrency using Kotlin?​
 

●​ You can manage concurrency using Kotlin coroutines and related 
constructs like Channel, Flow, and Job.​
 

75.​ Explain the concept of Inline functions in Kotlin.​
 

●​ inline functions are used to avoid the overhead of lambda 
expressions by inlining the code of the lambda at the call site.​
 

 

Technical Kotlin Interview Questions (76-100) 

76.​ How does Kotlin interact with Java?​
 

●​ Kotlin is fully interoperable with Java, meaning that Kotlin code can call 
Java classes and vice versa.​
 

77.​ What is annotation class in Kotlin?​
 

●​ annotation class is used to define annotations, which are metadata 
for code that can be accessed during runtime.​
 

78.​ How do you convert a String to Int in Kotlin?​
 



 

●​ Use toInt() to convert a String to an Int, or toIntOrNull() to 
avoid exceptions if the string is not a valid number.​
 

79.​ Explain the Array functions in Kotlin.​
 

●​ Kotlin provides various functions to manipulate arrays, like map(), 
filter(), forEach(), etc.​
 

80.​ What is the role of object in Kotlin?​
 

●​ The object keyword is used to define a singleton, an anonymous 
class, or a companion object.​
 

81.​ How do you define a custom exception in Kotlin?​
 

●​ Custom exceptions in Kotlin are defined by inheriting from Exception 
or any subclass of it.​
 

82.​ What is super used for in Kotlin?​
 

●​ super is used to access members (methods or properties) of a 
superclass.​
 

83.​ What is a map in Kotlin?​
 

●​ A map is a collection that holds key-value pairs, where each key maps 
to exactly one value.​
 

84.​ How do you access Java classes from Kotlin?​
 

●​ Kotlin allows direct access to Java classes without requiring additional 
syntax, thanks to its interoperability with Java.​
 

85.​ What are when expressions used for in Kotlin?​
 

●​ when expressions are used for branching based on different conditions, 
similar to a switch statement in other languages.​
 



 

86.​ What is with function in Kotlin?​
 

●​ with is a scoping function used to operate on an object within a block 
of code.​
 

87.​ What is takeIf in Kotlin?​
 

●​ takeIf is used to return the object if it satisfies a condition, or null 
otherwise.​
 

88.​ How do you use for loops in Kotlin?​
 

●​ Kotlin provides traditional for loops and enhanced forEach methods 
for iterating over collections.​
 

89.​ What is uninitialized in Kotlin?​
 

●​ Uninitialized properties are declared but not yet assigned a value. Using 
them can lead to errors unless handled properly.​
 

90.​ What is class delegation in Kotlin?​
 

●​ Class delegation is a mechanism in Kotlin where a class delegates the 
implementation of some methods to another class.​
 

91.​ What is Kotlin Reflection?​
 

●​ Kotlin Reflection is a feature that allows the inspection of classes, 
functions, and properties at runtime.​
 

92.​ Explain the delegates in Kotlin.​
 

●​ delegates in Kotlin are used to delegate the implementation of 
properties to another object.​
 

93.​ What is @JvmOverloads in Kotlin?​
 



 

●​ The @JvmOverloads annotation generates overloaded methods with 
default values to make Kotlin code compatible with Java.​
 

94.​ What is CoroutineScope in Kotlin?​
 

●​ CoroutineScope defines the context in which coroutines are launched 
and their lifecycle.​
 

95.​ How do you handle background tasks in Kotlin?​
 

●​ Background tasks can be handled using coroutines for non-blocking 
execution.​
 

96.​ What is lambda with receiver in Kotlin?​
 

●​ A lambda with receiver is a lambda that can access members of the 
receiver object directly.​
 

97.​ What is runBlocking used for in Kotlin?​
 

●​ runBlocking is used to start a coroutine in the main thread and block 
until it completes.​
 

98.​ Explain the concept of generics in Kotlin.​
 

●​ Generics allow classes and functions to work with any type, increasing 
code reusability and safety.​
 

99.​ What is @JvmName annotation used for in Kotlin?​
 

●​ @JvmName allows renaming a function when it is compiled to JVM 
bytecode, ensuring compatibility with Java.​
 

100.​ How do you declare a singleton in Kotlin?​
 

●​ A singleton in Kotlin is declared using the object keyword, which 
creates a single instance of a class.​
 



 

 


	Basic Kotlin Interview Questions (1-25) 
	Intermediate Kotlin Interview Questions (26-50) 
	Advanced Kotlin Interview Questions (51-75) 
	Technical Kotlin Interview Questions (76-100) 

