Kotlin

Basic Kotlin Interview Questions (1-25)

1. What is Kotlin?
o Kotlin is a statically typed programming language that runs on the
Java Virtual Machine (JVM). It is fully interoperable with Java and
is designed to be more concise and expressive.
2. What are the advantages of Kotlin over Java?
o Kaotlin offers concise syntax, null safety, extension functions,
smart casts, coroutines for asynchronous programming, and
better support for functional programming.

3. What is the difference between val and var in Kotlin?

o val is used for immutable references (like final in Java), while
var is used for mutable references.

4. What is the fun keyword in Kotlin?

o The fun keyword is used to declare a function in Kotlin.
5. What are data classes in Kotlin?

o Data classes are classes that are used to hold data. They
automatically generate functions like toString(), equals(),
and hashCode().

6. What is null safety in Kotlin?

o Null safety in Kotlin prevents null pointer exceptions by
distinguishing between nullable and non-nullable types.

7. What is a companion object in Kotlin?

o A companion object is an object declared inside a class, which is
used to hold static-like members in Kotlin.

8. Explain the concept of extension functions in Kotlin.

o Extension functions allow adding functionality to existing classes
without modifying their source code.

9. What is the difference between == and === in Kotlin?

o == checks for value equality (similar to equals()), while ===
checks for reference equality (i.e., whether two references point
to the same object).

10. What are lateinit and lazy in Kotlin?

e lateinit is used to initialize a variable later, while 1lazy is used for
lazy initialization of a value.

11.What are the different types of variables in Kotlin?
e Variables in Kotlin can be of types val (immutable) or var (mutable).
12. What is a primary constructor in Kotlin?

e A primary constructor is a part of the class declaration and can be used
to initialize the properties of a class.

13. What is a secondary constructor in Kotlin?

e A secondary constructor is a constructor that is not part of the class
declaration and is used to provide additional ways to initialize the class.

14. How do you handle exceptions in Kotlin?

e Exceptions are handled using try, catch, and finally blocks in
Kotlin, similar to Java.

15. What is the difference between a class and an object in Kotlin?

e A class is a blueprint for creating objects, while an object is an instance
of a class.

16. What is the difference between Array and List in Kotlin?

e Array is a fixed-size collection that can hold elements of any type,

while List is a read-only collection that can hold a dynamic number of
elements.

17. What are coroutines in Kotlin?

e Coroutines are a way of handling asynchronous programming and
background tasks in Kotlin, allowing you to write asynchronous code in
a sequential manner.

18. What is the difference between is and as in Kotlin?

e 1isis used to check the type of a variable, while as is used for casting a
variable to a specific type.

19. Explain the when expression in Kotlin.

e The when expression is similar to switch in other languages and is
used for branching based on a condition or value.

20. What is the purpose of in keyword in Kotlin?

e The in keyword is used for checking if a value is within a range or for
iterating over collections.

21. What are sealed classes in Kotlin?

e Sealed classes restrict class hierarchies to a limited set of subclasses,
providing more control over inheritance.

22. How do you define default parameter values in Kotlin?

e You can define default values for function parameters in Kotlin by
specifying them in the function signature.

23. What is the purpose of the apply function in Kotlin?

e The apply function is used for configuring objects, executing multiple
operations on an object in a block, and returning the object itself.

24. What is the with function in Kotlin?

e The with function allows you to execute a block of code on an object
without having to refer to the object explicitly every time.

25. What is the difference between StringBuilder and
StringBuffer in Kotlin?

e StringBuilder is used for mutable strings in single-threaded
contexts, while StringBuffer is used in multi-threaded contexts.

Intermediate Kotlin Interview Questions (26-50)

26. What are higher-order functions in Kotlin?

e Higher-order functions are functions that take other functions as
parameters or return functions.

27. What are lambda expressions in Kotlin?

e Lambda expressions are anonymous functions that can be passed
around as values.

28. What is the purpose of inline functions in Kotlin?
e The inline keyword is used to reduce the overhead of lambda

expressions by inserting the function body directly into the calling
function.

29. What is a generic class in Kotlin?

e A generic class in Kotlin allows you to define classes, interfaces, and
functions that work with any type.

30. What is the out keyword in Kotlin?

e The out keyword is used for covariance, allowing you to return a
subtype of a specified type.

31. What is the in keyword in Kotlin?

e The in keyword is used for contravariance, allowing you to pass a
supertype of a specified type.

32. Whatis an interface in Kotlin?

e An interface in Kotlin is a contract that classes can implement. It can
contain abstract methods as well as default method implementations.

33. How does Kotlin handle null references?

e Kaotlin uses nullable types (Type?) and null safety features to prevent
null pointer exceptions.

34. What is the purpose of the @JvmStatic annotation in Kotlin?

e The @JvmStatic annotation is used to mark a method as static when
generating Java bytecode, allowing it to be accessed without an
instance of the class.

35. What are extension properties in Kotlin?

e Extension properties allow you to add properties to existing classes
without modifying their source code.

36. What is destructuring declaration in Kotlin?

e Destructuring declaration allows you to unpack a data class into
separate variables.

37. What are the different types of collections in Kotlin?

e Kotlin provides List, Set, and Map collections, each of which can be
mutable or immutable.

38. What is the lazy initialization in Kotlin?

e lazy initialization is a way to initialize a variable only when it is first
accessed.

39. What are the benefits of using sealed classes?

e Sealed classes allow you to define a limited set of subclasses, making it
easier to handle exhaustive when expressions.

40. How does run function work in Kotlin?

e The run function is used for executing a block of code and returning the
result of the last expression in that block.

41. What are try-catch-finally blocks used for in Kotlin?

e These blocks are used to handle exceptions in a structured way, where
finally executes regardless of whether an exception is thrown or not.

42. Whatis apply vs also in Kotlin?

e Both apply and also are used for performing operations on an object,
but apply returns the object itself, while also returns the result of the
lambda.

43. Whatis reified in Kotlin?

e The reified keyword is used in inline functions to access the actual
type of a generic type parameter.

44. How does Kotlin handle multiple inheritance?

e Kaotlin allows multiple inheritance through interfaces, but only single
inheritance for classes.

45. What is the purpose of the override keyword in Kotlin?

e The override keyword is used to indicate that a function or property in
a subclass is overriding a function or property in a superclass.

46. What is sealed interface in Kotlin?

e Asealed interface is an interface that restricts its implementation
to a limited set of types, similar to sealed classes.

47. How does ArraylList work in Kotlin?

e ArraylList in Kotlin is a resizable array-backed collection, part of the
MutablelList interface.

48. What is the difference between set and 1ist in Kotlin?

e A set is a collection of unique elements, while a 1ist is an ordered
collection that may contain duplicates.

49. How do you handle concurrency in Kotlin?

e Kaotlin provides coroutines for handling concurrency and asynchronous
tasks in a more lightweight and efficient way.

50. What are reified type parameters in Kotlin?

e reified type parameters are used in inline functions to preserve type
information for generics.

Advanced Kotlin Interview Questions (51-75)

51. How do coroutines work in Kotlin?

e Coroutines are lightweight threads that allow asynchronous and
non-blocking code execution, simplifying concurrency.

52. Whatis a CoroutineScope in Kotlin?

e A CoroutineScope is used to manage and control the lifecycle of
coroutines, ensuring that they are cancelled when no longer needed.

53. What is a Channel in Kotlin coroutines?

e A Channel is a way of communicating between coroutines, providing a
safe way to send and receive data.

54. What is the suspend keyword in Kotlin?

e The suspend keyword is used to mark a function that can be paused
and resumed without blocking the thread.

55. Whatis CoroutineDispatcher in Kotlin?

e CoroutineDispatcher is used to control the thread or thread pool on
which a coroutine runs.

56. What is Flow in Kotlin?

e Flowis an asynchronous stream of values that can be collected and
processed in a non-blocking manner.

57. What is the difference between launch and async in Kotlin
coroutines?

e launch is used for launching a coroutine without returning a result,
while async is used for launching a coroutine that returns a result.

58. Whatis withContext in Kotlin coroutines?

e withContext is used to change the context (thread) of a coroutine,
typically used for switching between different dispatchers.

59. Explain the concept of actor in Kotlin.

e An actor is a special type of coroutine used for managing state in a
concurrent manner.

60. What is the purpose of Job in Kotlin coroutines?

e Job is used to manage the lifecycle of a coroutine and can be cancelled
when necessary.

61. What are suspend functions and how are they used in Kotlin?

e suspend functions are special functions that can be suspended during
their execution and resumed later, making them suitable for
asynchronous operations.

62. How do you handle exceptions in Kotlin coroutines?

e Exceptions in coroutines are handled by using try-catch blocks or
using structured concurrency principles with supervisorScope.

63. Whatis CoroutineExceptionHandler in Kotlin?

e CoroutineExceptionHandler is used to handle uncaught
exceptions in coroutines.

64. Whatis the GlobalScope in Kotlin?

e GlobalScope is a global singleton scope for launching top-level
coroutines that are not bound to any specific lifecycle.

65. Whatis runBlocking in Kotlin coroutines?

e runBlocking is used to start a coroutine in the main thread, blocking
the thread until the coroutine completes.

66. How does Kotlin handle memory management?

e Kaotlin relies on the JVM's garbage collection system for memory
management, but it also has its own memory optimizations for handling
null safety and object lifecycles.

67. Whatis Kotlin Native?

e Kaotlin Native is a technology that compiles Kotlin code to native

binaries, enabling Kotlin to be used for developing applications for
platforms like iOS and embedded systems.

68. What is the @Inject annotation in Kotlin?

e The @Inject annotation is used for dependency injection in Kotlin,
typically with frameworks like Dagger or Koin.

69. Whatis Kotlin Multiplatform?

e Kaotlin Multiplatform allows you to write code that can run on multiple
platforms (Android, iOS, JVM, JS) without rewriting the logic for each
platform.

70. How do you perform testing in Kotlin?

e Kaotlin supports testing using libraries like JUnit, TestNG, and others,
and can be used in combination with mocking libraries like Mockito.

71. What are the pros and cons of using Kotlin over Java?

e Pros include null safety, concise syntax, and enhanced functionality.
Cons include learning curve and sometimes larger binary size.

72. Whatis Kotlin DSL?

e Kaotlin DSL (Domain Specific Language) allows you to create expressive
and domain-specific languages using Kotlin.

73. What is the difference between apply and also in Kotlin?

e Both apply and also are used for operations on an object, but apply
returns the object itself, while also returns the result of the lambda.

74. How do you manage concurrency using Kotlin?

e You can manage concurrency using Kotlin coroutines and related
constructs like Channel, Flow, and Job.

75. Explain the concept of Inline functions in Kotlin.

e 1inline functions are used to avoid the overhead of lambda
expressions by inlining the code of the lambda at the call site.

Technical Kotlin Interview Questions (76-100)

76. How does Kotlin interact with Java?

e Kotlin is fully interoperable with Java, meaning that Kotlin code can call
Java classes and vice versa.

77. Whatis annotation class in Kotlin?

e annotation class is used to define annotations, which are metadata
for code that can be accessed during runtime.

78. How do you converta String to Int in Kotlin?

e Use toInt() toconvertaStringtoan Int,or toIntOrNull() to
avoid exceptions if the string is not a valid number.

79. Explain the Array functions in Kotlin.

e Kotlin provides various functions to manipulate arrays, like map(),
filter(), forEach(), etc.

80. What is the role of object in Kotlin?

e The object keyword is used to define a singleton, an anonymous
class, or a companion object.

81. How do you define a custom exception in Kotlin?

e Custom exceptions in Kotlin are defined by inheriting from Exception
or any subclass of it.

82. Whatis super used for in Kotlin?

e super is used to access members (methods or properties) of a
superclass.

83. Whatis a map in Kotlin?

e A map is a collection that holds key-value pairs, where each key maps
to exactly one value.

84. How do you access Java classes from Kotlin?

e Kotlin allows direct access to Java classes without requiring additional
syntax, thanks to its interoperability with Java.

85. What are when expressions used for in Kotlin?

e when expressions are used for branching based on different conditions,
similar to a switch statement in other languages.

86. What is with function in Kotlin?

e with is a scoping function used to operate on an object within a block
of code.

87. Whatis takeIf in Kotlin?

e takelf is used to return the object if it satisfies a condition, or null
otherwise.

88. How do you use for loops in Kotlin?

e Kotlin provides traditional for loops and enhanced forEach methods
for iterating over collections.

89. Whatis uninitialized in Kotlin?

e Uninitialized properties are declared but not yet assigned a value. Using
them can lead to errors unless handled properly.

90. Whatis class delegation in Kotlin?

e Class delegation is a mechanism in Kotlin where a class delegates the
implementation of some methods to another class.

91. Whatis Kotlin Reflection?

e Kotlin Reflection is a feature that allows the inspection of classes,
functions, and properties at runtime.

92. Explain the delegates in Kotlin.

e delegates in Kotlin are used to delegate the implementation of
properties to another object.

93. What is @JvmOverloads in Kotlin?

e The @JvmOverloads annotation generates overloaded methods with
default values to make Kotlin code compatible with Java.

94. Whatis CoroutineScope in Kotlin?

e CoroutineScope defines the context in which coroutines are launched
and their lifecycle.

95. How do you handle background tasks in Kotlin?

e Background tasks can be handled using coroutines for non-blocking
execution.

96. What is lambda with receiver in Kotlin?

e A lambda with receiver is a lambda that can access members of the
receiver object directly.

97. Whatis runBlocking used for in Kotlin?

e runBlocking is used to start a coroutine in the main thread and block
until it completes.

98. Explain the concept of generics in Kotlin.

e Generics allow classes and functions to work with any type, increasing
code reusability and safety.

99. What is @JvmName annotation used for in Kotlin?

e @JvmName allows renaming a function when it is compiled to JVM
bytecode, ensuring compatibility with Java.

100. How do you declare a singleton in Kotlin?

e A singleton in Kotlin is declared using the object keyword, which
creates a single instance of a class.

X H D M TECHPARK
- GUIDE'S FOR PERFECT CAREER PATHWAY

	Basic Kotlin Interview Questions (1-25)
	Intermediate Kotlin Interview Questions (26-50)
	Advanced Kotlin Interview Questions (51-75)
	Technical Kotlin Interview Questions (76-100)

